ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval4 Unicode version

Theorem bcval4 10861
Description: Value of the binomial coefficient,  N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  -> 
( N  _C  K
)  =  0 )

Proof of Theorem bcval4
StepHypRef Expression
1 elfzle1 10119 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  0  <_  K )
2 0re 8043 . . . . . . . . . 10  |-  0  e.  RR
3 elfzelz 10117 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
43zred 9465 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
5 lenlt 8119 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  K  <->  -.  K  <  0 ) )
62, 4, 5sylancr 414 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  (
0  <_  K  <->  -.  K  <  0 ) )
71, 6mpbid 147 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  -.  K  <  0 )
87adantl 277 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  K  <  0 )
9 elfzle2 10120 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
109adantl 277 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  K  <_  N
)
11 nn0re 9275 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  RR )
12 lenlt 8119 . . . . . . . . 9  |-  ( ( K  e.  RR  /\  N  e.  RR )  ->  ( K  <_  N  <->  -.  N  <  K ) )
134, 11, 12syl2anr 290 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  ( K  <_  N 
<->  -.  N  <  K
) )
1410, 13mpbid 147 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  N  <  K )
15 ioran 753 . . . . . . 7  |-  ( -.  ( K  <  0  \/  N  <  K )  <-> 
( -.  K  <  0  /\  -.  N  <  K ) )
168, 14, 15sylanbrc 417 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  ( K  <  0  \/  N  < 
K ) )
1716ex 115 . . . . 5  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... N )  ->  -.  ( K  <  0  \/  N  <  K ) ) )
1817adantr 276 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  ->  -.  ( K  <  0  \/  N  < 
K ) ) )
1918con2d 625 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  <  0  \/  N  < 
K )  ->  -.  K  e.  ( 0 ... N ) ) )
20193impia 1202 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  ->  -.  K  e.  (
0 ... N ) )
21 bcval3 10860 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
2220, 21syld3an3 1294 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  -> 
( N  _C  K
)  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896    < clt 8078    <_ cle 8079   NN0cn0 9266   ZZcz 9343   ...cfz 10100    _C cbc 10856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-fz 10101  df-seqfrec 10557  df-fac 10835  df-bc 10857
This theorem is referenced by:  bc0k  10865  bcn1  10867  bcpasc  10875
  Copyright terms: Public domain W3C validator