ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fznlem Unicode version

Theorem fznlem 10198
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
Assertion
Ref Expression
fznlem  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  ( M ... N
)  =  (/) ) )

Proof of Theorem fznlem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 zre 9411 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  RR )
2 zre 9411 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  RR )
3 lenlt 8183 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
41, 2, 3syl2an 289 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  -.  N  <  M ) )
54biimpd 144 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  -.  N  <  M
) )
65con2d 625 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  -.  M  <_  N
) )
76imp 124 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  -.  M  <_  N )
87adantr 276 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  -.  M  <_  N )
9 simplll 533 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  M  e.  ZZ )
109zred 9530 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  M  e.  RR )
11 simpr 110 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
1211zred 9530 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  k  e.  RR )
13 simpllr 534 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  N  e.  ZZ )
1413zred 9530 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  N  e.  RR )
15 letr 8190 . . . . . . 7  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  N  e.  RR )  ->  (
( M  <_  k  /\  k  <_  N )  ->  M  <_  N
) )
1610, 12, 14, 15syl3anc 1250 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  M  <_  N
) )
178, 16mtod 665 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  -.  ( M  <_  k  /\  k  <_  N ) )
1817ralrimiva 2581 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  A. k  e.  ZZ  -.  ( M  <_  k  /\  k  <_  N ) )
19 rabeq0 3498 . . . 4  |-  ( { k  e.  ZZ  | 
( M  <_  k  /\  k  <_  N ) }  =  (/)  <->  A. k  e.  ZZ  -.  ( M  <_  k  /\  k  <_  N ) )
2018, 19sylibr 134 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) }  =  (/) )
21 fzval 10167 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
2221eqeq1d 2216 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M ... N )  =  (/)  <->  {
k  e.  ZZ  | 
( M  <_  k  /\  k  <_  N ) }  =  (/) ) )
2322adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  ( ( M ... N )  =  (/) 
<->  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }  =  (/) ) )
2420, 23mpbird 167 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  ( M ... N )  =  (/) )
2524ex 115 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  ( M ... N
)  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   (/)c0 3468   class class class wbr 4059  (class class class)co 5967   RRcr 7959    < clt 8142    <_ cle 8143   ZZcz 9407   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltwlin 8073
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-neg 8281  df-z 9408  df-fz 10166
This theorem is referenced by:  fzn  10199
  Copyright terms: Public domain W3C validator