ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fznlem Unicode version

Theorem fznlem 10116
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
Assertion
Ref Expression
fznlem  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  ( M ... N
)  =  (/) ) )

Proof of Theorem fznlem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 zre 9330 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  RR )
2 zre 9330 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  RR )
3 lenlt 8102 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
41, 2, 3syl2an 289 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  -.  N  <  M ) )
54biimpd 144 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  -.  N  <  M
) )
65con2d 625 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  -.  M  <_  N
) )
76imp 124 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  -.  M  <_  N )
87adantr 276 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  -.  M  <_  N )
9 simplll 533 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  M  e.  ZZ )
109zred 9448 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  M  e.  RR )
11 simpr 110 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
1211zred 9448 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  k  e.  RR )
13 simpllr 534 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  N  e.  ZZ )
1413zred 9448 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  N  e.  RR )
15 letr 8109 . . . . . . 7  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  N  e.  RR )  ->  (
( M  <_  k  /\  k  <_  N )  ->  M  <_  N
) )
1610, 12, 14, 15syl3anc 1249 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  M  <_  N
) )
178, 16mtod 664 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M )  /\  k  e.  ZZ )  ->  -.  ( M  <_  k  /\  k  <_  N ) )
1817ralrimiva 2570 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  A. k  e.  ZZ  -.  ( M  <_  k  /\  k  <_  N ) )
19 rabeq0 3480 . . . 4  |-  ( { k  e.  ZZ  | 
( M  <_  k  /\  k  <_  N ) }  =  (/)  <->  A. k  e.  ZZ  -.  ( M  <_  k  /\  k  <_  N ) )
2018, 19sylibr 134 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) }  =  (/) )
21 fzval 10085 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
2221eqeq1d 2205 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M ... N )  =  (/)  <->  {
k  e.  ZZ  | 
( M  <_  k  /\  k  <_  N ) }  =  (/) ) )
2322adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  ( ( M ... N )  =  (/) 
<->  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }  =  (/) ) )
2420, 23mpbird 167 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  <  M
)  ->  ( M ... N )  =  (/) )
2524ex 115 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  ( M ... N
)  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   (/)c0 3450   class class class wbr 4033  (class class class)co 5922   RRcr 7878    < clt 8061    <_ cle 8062   ZZcz 9326   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltwlin 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-neg 8200  df-z 9327  df-fz 10084
This theorem is referenced by:  fzn  10117
  Copyright terms: Public domain W3C validator