ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmunb Unicode version

Theorem prmunb 12288
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Distinct variable group:    N, p

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 9117 . 2  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 10644 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3 elnnuz 9498 . . . . 5  |-  ( ( ! `  N )  e.  NN  <->  ( ! `  N )  e.  (
ZZ>= `  1 ) )
4 eluzp1p1 9487 . . . . . 6  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
5 df-2 8912 . . . . . . 7  |-  2  =  ( 1  +  1 )
65fveq2i 5488 . . . . . 6  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
74, 6eleqtrrdi 2259 . . . . 5  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  2 )
)
83, 7sylbi 120 . . . 4  |-  ( ( ! `  N )  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
) )
9 exprmfct 12066 . . . 4  |-  ( ( ( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
102, 8, 93syl 17 . . 3  |-  ( N  e.  NN0  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
11 prmz 12039 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  ZZ )
12 nn0z 9207 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
13 eluz 9475 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  p )  <->  p  <_  N ) )
1411, 12, 13syl2an 287 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  <->  p  <_  N ) )
15 prmuz2 12059 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
16 eluz2b2 9537 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
1715, 16sylib 121 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  ( p  e.  NN  /\  1  <  p ) )
1817adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( p  e.  NN  /\  1  < 
p ) )
1918simpld 111 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN )
2019nnnn0d 9163 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN0 )
21 eluznn0 9533 . . . . . . . . . . . . 13  |-  ( ( p  e.  NN0  /\  N  e.  ( ZZ>= `  p ) )  ->  N  e.  NN0 )
2220, 21sylancom 417 . . . . . . . . . . . 12  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  N  e.  NN0 )
23 nnz 9206 . . . . . . . . . . . 12  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  ZZ )
2422, 2, 233syl 17 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( ! `  N )  e.  ZZ )
2518simprd 113 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  1  <  p )
26 dvdsfac 11794 . . . . . . . . . . . 12  |-  ( ( p  e.  NN  /\  N  e.  ( ZZ>= `  p ) )  ->  p  ||  ( ! `  N ) )
2719, 26sylancom 417 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  ||  ( ! `  N )
)
28 ndvdsp1 11865 . . . . . . . . . . . 12  |-  ( ( ( ! `  N
)  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  ->  (
p  ||  ( ! `  N )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
2928imp 123 . . . . . . . . . . 11  |-  ( ( ( ( ! `  N )  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  /\  p  ||  ( ! `  N ) )  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3024, 19, 25, 27, 29syl31anc 1231 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3130ex 114 . . . . . . . . 9  |-  ( p  e.  Prime  ->  ( N  e.  ( ZZ>= `  p
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3231adantr 274 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
3314, 32sylbird 169 . . . . . . 7  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  <_  N  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3433con2d 614 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  ||  ( ( ! `  N )  +  1 )  ->  -.  p  <_  N ) )
3534ancoms 266 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  -.  p  <_  N ) )
36 zltnle 9233 . . . . . 6  |-  ( ( N  e.  ZZ  /\  p  e.  ZZ )  ->  ( N  <  p  <->  -.  p  <_  N )
)
3712, 11, 36syl2an 287 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( N  <  p  <->  -.  p  <_  N )
)
3835, 37sylibrd 168 . . . 4  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  N  <  p
) )
3938reximdva 2567 . . 3  |-  ( N  e.  NN0  ->  ( E. p  e.  Prime  p  ||  ( ( ! `  N )  +  1 )  ->  E. p  e.  Prime  N  <  p
) )
4010, 39mpd 13 . 2  |-  ( N  e.  NN0  ->  E. p  e.  Prime  N  <  p
)
411, 40syl 14 1  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   E.wrex 2444   class class class wbr 3981   ` cfv 5187  (class class class)co 5841   1c1 7750    + caddc 7752    < clt 7929    <_ cle 7930   NNcn 8853   2c2 8904   NN0cn0 9110   ZZcz 9187   ZZ>=cuz 9462   !cfa 10634    || cdvds 11723   Primecprime 12035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-en 6703  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-fac 10635  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-prm 12036
This theorem is referenced by:  prminf  12384
  Copyright terms: Public domain W3C validator