ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmunb Unicode version

Theorem prmunb 12314
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Distinct variable group:    N, p

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 9142 . 2  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 10669 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3 elnnuz 9523 . . . . 5  |-  ( ( ! `  N )  e.  NN  <->  ( ! `  N )  e.  (
ZZ>= `  1 ) )
4 eluzp1p1 9512 . . . . . 6  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
5 df-2 8937 . . . . . . 7  |-  2  =  ( 1  +  1 )
65fveq2i 5499 . . . . . 6  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
74, 6eleqtrrdi 2264 . . . . 5  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  2 )
)
83, 7sylbi 120 . . . 4  |-  ( ( ! `  N )  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
) )
9 exprmfct 12092 . . . 4  |-  ( ( ( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
102, 8, 93syl 17 . . 3  |-  ( N  e.  NN0  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
11 prmz 12065 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  ZZ )
12 nn0z 9232 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
13 eluz 9500 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  p )  <->  p  <_  N ) )
1411, 12, 13syl2an 287 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  <->  p  <_  N ) )
15 prmuz2 12085 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
16 eluz2b2 9562 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
1715, 16sylib 121 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  ( p  e.  NN  /\  1  <  p ) )
1817adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( p  e.  NN  /\  1  < 
p ) )
1918simpld 111 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN )
2019nnnn0d 9188 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN0 )
21 eluznn0 9558 . . . . . . . . . . . . 13  |-  ( ( p  e.  NN0  /\  N  e.  ( ZZ>= `  p ) )  ->  N  e.  NN0 )
2220, 21sylancom 418 . . . . . . . . . . . 12  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  N  e.  NN0 )
23 nnz 9231 . . . . . . . . . . . 12  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  ZZ )
2422, 2, 233syl 17 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( ! `  N )  e.  ZZ )
2518simprd 113 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  1  <  p )
26 dvdsfac 11820 . . . . . . . . . . . 12  |-  ( ( p  e.  NN  /\  N  e.  ( ZZ>= `  p ) )  ->  p  ||  ( ! `  N ) )
2719, 26sylancom 418 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  ||  ( ! `  N )
)
28 ndvdsp1 11891 . . . . . . . . . . . 12  |-  ( ( ( ! `  N
)  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  ->  (
p  ||  ( ! `  N )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
2928imp 123 . . . . . . . . . . 11  |-  ( ( ( ( ! `  N )  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  /\  p  ||  ( ! `  N ) )  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3024, 19, 25, 27, 29syl31anc 1236 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3130ex 114 . . . . . . . . 9  |-  ( p  e.  Prime  ->  ( N  e.  ( ZZ>= `  p
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3231adantr 274 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
3314, 32sylbird 169 . . . . . . 7  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  <_  N  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3433con2d 619 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  ||  ( ( ! `  N )  +  1 )  ->  -.  p  <_  N ) )
3534ancoms 266 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  -.  p  <_  N ) )
36 zltnle 9258 . . . . . 6  |-  ( ( N  e.  ZZ  /\  p  e.  ZZ )  ->  ( N  <  p  <->  -.  p  <_  N )
)
3712, 11, 36syl2an 287 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( N  <  p  <->  -.  p  <_  N )
)
3835, 37sylibrd 168 . . . 4  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  N  <  p
) )
3938reximdva 2572 . . 3  |-  ( N  e.  NN0  ->  ( E. p  e.  Prime  p  ||  ( ( ! `  N )  +  1 )  ->  E. p  e.  Prime  N  <  p
) )
4010, 39mpd 13 . 2  |-  ( N  e.  NN0  ->  E. p  e.  Prime  N  <  p
)
411, 40syl 14 1  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141   E.wrex 2449   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   !cfa 10659    || cdvds 11749   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-prm 12062
This theorem is referenced by:  prminf  12410
  Copyright terms: Public domain W3C validator