ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmunb Unicode version

Theorem prmunb 12885
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Distinct variable group:    N, p

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 9376 . 2  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 10957 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3 elnnuz 9759 . . . . 5  |-  ( ( ! `  N )  e.  NN  <->  ( ! `  N )  e.  (
ZZ>= `  1 ) )
4 eluzp1p1 9748 . . . . . 6  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
5 df-2 9169 . . . . . . 7  |-  2  =  ( 1  +  1 )
65fveq2i 5630 . . . . . 6  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
74, 6eleqtrrdi 2323 . . . . 5  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  2 )
)
83, 7sylbi 121 . . . 4  |-  ( ( ! `  N )  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
) )
9 exprmfct 12660 . . . 4  |-  ( ( ( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
102, 8, 93syl 17 . . 3  |-  ( N  e.  NN0  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
11 prmz 12633 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  ZZ )
12 nn0z 9466 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
13 eluz 9735 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  p )  <->  p  <_  N ) )
1411, 12, 13syl2an 289 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  <->  p  <_  N ) )
15 prmuz2 12653 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
16 eluz2b2 9798 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
1715, 16sylib 122 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  ( p  e.  NN  /\  1  <  p ) )
1817adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( p  e.  NN  /\  1  < 
p ) )
1918simpld 112 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN )
2019nnnn0d 9422 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN0 )
21 eluznn0 9794 . . . . . . . . . . . . 13  |-  ( ( p  e.  NN0  /\  N  e.  ( ZZ>= `  p ) )  ->  N  e.  NN0 )
2220, 21sylancom 420 . . . . . . . . . . . 12  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  N  e.  NN0 )
23 nnz 9465 . . . . . . . . . . . 12  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  ZZ )
2422, 2, 233syl 17 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( ! `  N )  e.  ZZ )
2518simprd 114 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  1  <  p )
26 dvdsfac 12371 . . . . . . . . . . . 12  |-  ( ( p  e.  NN  /\  N  e.  ( ZZ>= `  p ) )  ->  p  ||  ( ! `  N ) )
2719, 26sylancom 420 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  ||  ( ! `  N )
)
28 ndvdsp1 12443 . . . . . . . . . . . 12  |-  ( ( ( ! `  N
)  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  ->  (
p  ||  ( ! `  N )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
2928imp 124 . . . . . . . . . . 11  |-  ( ( ( ( ! `  N )  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  /\  p  ||  ( ! `  N ) )  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3024, 19, 25, 27, 29syl31anc 1274 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3130ex 115 . . . . . . . . 9  |-  ( p  e.  Prime  ->  ( N  e.  ( ZZ>= `  p
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3231adantr 276 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
3314, 32sylbird 170 . . . . . . 7  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  <_  N  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3433con2d 627 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  ||  ( ( ! `  N )  +  1 )  ->  -.  p  <_  N ) )
3534ancoms 268 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  -.  p  <_  N ) )
36 zltnle 9492 . . . . . 6  |-  ( ( N  e.  ZZ  /\  p  e.  ZZ )  ->  ( N  <  p  <->  -.  p  <_  N )
)
3712, 11, 36syl2an 289 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( N  <  p  <->  -.  p  <_  N )
)
3835, 37sylibrd 169 . . . 4  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  N  <  p
) )
3938reximdva 2632 . . 3  |-  ( N  e.  NN0  ->  ( E. p  e.  Prime  p  ||  ( ( ! `  N )  +  1 )  ->  E. p  e.  Prime  N  <  p
) )
4010, 39mpd 13 . 2  |-  ( N  e.  NN0  ->  E. p  e.  Prime  N  <  p
)
411, 40syl 14 1  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   E.wrex 2509   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   NNcn 9110   2c2 9161   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722   !cfa 10947    || cdvds 12298   Primecprime 12629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-prm 12630
This theorem is referenced by:  prminf  13026
  Copyright terms: Public domain W3C validator