ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdcle Unicode version

Theorem zdcle 9331
Description: Integer  <_ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
Assertion
Ref Expression
zdcle  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )

Proof of Theorem zdcle
StepHypRef Expression
1 ztri3or 9298 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2 zre 9259 . . 3  |-  ( A  e.  ZZ  ->  A  e.  RR )
3 zre 9259 . . 3  |-  ( B  e.  ZZ  ->  B  e.  RR )
4 ltle 8047 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
5 orc 712 . . . . . 6  |-  ( A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
6 df-dc 835 . . . . . 6  |-  (DECID  A  <_  B 
<->  ( A  <_  B  \/  -.  A  <_  B
) )
75, 6sylibr 134 . . . . 5  |-  ( A  <_  B  -> DECID  A  <_  B )
84, 7syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> DECID  A  <_  B ) )
9 eqle 8051 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
109, 7syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  -> DECID  A  <_  B )
1110ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  -> DECID  A  <_  B ) )
1211adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  -> DECID 
A  <_  B )
)
13 lenlt 8035 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
1413biimpd 144 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  -.  B  <  A
) )
1514con2d 624 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  ->  -.  A  <_  B
) )
16 olc 711 . . . . . 6  |-  ( -.  A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
1716, 6sylibr 134 . . . . 5  |-  ( -.  A  <_  B  -> DECID  A  <_  B )
1815, 17syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  -> DECID  A  <_  B ) )
198, 12, 183jaod 1304 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <_  B ) )
202, 3, 19syl2an 289 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <_  B ) )
211, 20mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    \/ w3o 977    = wceq 1353    e. wcel 2148   class class class wbr 4005   RRcr 7812    < clt 7994    <_ cle 7995   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  uzin  9562  xnn0dcle  9804  exfzdc  10242  modfzo0difsn  10397  fzfig  10432  iseqf1olemjpcl  10497  iseqf1olemqpcl  10498  seq3f1oleml  10505  seq3f1o  10506  fser0const  10518  uzin2  10998  2zsupmax  11236  2zinfmin  11253  sumeq2  11369  summodclem2a  11391  fsum3  11397  fsumcl2lem  11408  fsumadd  11416  sumsnf  11419  fsummulc2  11458  explecnv  11515  prodeq2  11567  prodmodclem3  11585  prodmodclem2a  11586  fprodseq  11593  prod1dc  11596  fprodmul  11601  prodsnf  11602  infssuzex  11952  pcdvdsb  12321  pcmpt2  12344  pcmptdvds  12345  pcprod  12346  pcfac  12350  1arithlem4  12366
  Copyright terms: Public domain W3C validator