Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zdcle | Unicode version |
Description: Integer is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.) |
Ref | Expression |
---|---|
zdcle | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ztri3or 9255 | . 2 | |
2 | zre 9216 | . . 3 | |
3 | zre 9216 | . . 3 | |
4 | ltle 8007 | . . . . 5 | |
5 | orc 707 | . . . . . 6 | |
6 | df-dc 830 | . . . . . 6 DECID | |
7 | 5, 6 | sylibr 133 | . . . . 5 DECID |
8 | 4, 7 | syl6 33 | . . . 4 DECID |
9 | eqle 8011 | . . . . . . 7 | |
10 | 9, 7 | syl 14 | . . . . . 6 DECID |
11 | 10 | ex 114 | . . . . 5 DECID |
12 | 11 | adantr 274 | . . . 4 DECID |
13 | lenlt 7995 | . . . . . . 7 | |
14 | 13 | biimpd 143 | . . . . . 6 |
15 | 14 | con2d 619 | . . . . 5 |
16 | olc 706 | . . . . . 6 | |
17 | 16, 6 | sylibr 133 | . . . . 5 DECID |
18 | 15, 17 | syl6 33 | . . . 4 DECID |
19 | 8, 12, 18 | 3jaod 1299 | . . 3 DECID |
20 | 2, 3, 19 | syl2an 287 | . 2 DECID |
21 | 1, 20 | mpd 13 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 w3o 972 wceq 1348 wcel 2141 class class class wbr 3989 cr 7773 clt 7954 cle 7955 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: uzin 9519 xnn0dcle 9759 exfzdc 10196 modfzo0difsn 10351 fzfig 10386 iseqf1olemjpcl 10451 iseqf1olemqpcl 10452 seq3f1oleml 10459 seq3f1o 10460 fser0const 10472 uzin2 10951 2zsupmax 11189 2zinfmin 11206 sumeq2 11322 summodclem2a 11344 fsum3 11350 fsumcl2lem 11361 fsumadd 11369 sumsnf 11372 fsummulc2 11411 explecnv 11468 prodeq2 11520 prodmodclem3 11538 prodmodclem2a 11539 fprodseq 11546 prod1dc 11549 fprodmul 11554 prodsnf 11555 infssuzex 11904 pcdvdsb 12273 pcmpt2 12296 pcmptdvds 12297 pcprod 12298 pcfac 12302 1arithlem4 12318 |
Copyright terms: Public domain | W3C validator |