ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdcle Unicode version

Theorem zdcle 9451
Description: Integer  <_ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
Assertion
Ref Expression
zdcle  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )

Proof of Theorem zdcle
StepHypRef Expression
1 ztri3or 9417 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2 zre 9378 . . 3  |-  ( A  e.  ZZ  ->  A  e.  RR )
3 zre 9378 . . 3  |-  ( B  e.  ZZ  ->  B  e.  RR )
4 ltle 8162 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
5 orc 714 . . . . . 6  |-  ( A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
6 df-dc 837 . . . . . 6  |-  (DECID  A  <_  B 
<->  ( A  <_  B  \/  -.  A  <_  B
) )
75, 6sylibr 134 . . . . 5  |-  ( A  <_  B  -> DECID  A  <_  B )
84, 7syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> DECID  A  <_  B ) )
9 eqle 8166 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
109, 7syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  -> DECID  A  <_  B )
1110ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  -> DECID  A  <_  B ) )
1211adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  -> DECID 
A  <_  B )
)
13 lenlt 8150 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
1413biimpd 144 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  -.  B  <  A
) )
1514con2d 625 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  ->  -.  A  <_  B
) )
16 olc 713 . . . . . 6  |-  ( -.  A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
1716, 6sylibr 134 . . . . 5  |-  ( -.  A  <_  B  -> DECID  A  <_  B )
1815, 17syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  -> DECID  A  <_  B ) )
198, 12, 183jaod 1317 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <_  B ) )
202, 3, 19syl2an 289 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <_  B ) )
211, 20mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2176   class class class wbr 4045   RRcr 7926    < clt 8109    <_ cle 8110   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375
This theorem is referenced by:  uzin  9683  xnn0dcle  9926  nelfzo  10276  exfzdc  10371  infssuzex  10378  modfzo0difsn  10542  fzfig  10577  iseqf1olemjpcl  10655  iseqf1olemqpcl  10656  seq3f1oleml  10663  seq3f1o  10664  fser0const  10682  ccatsymb  11061  fzowrddc  11103  swrdnd  11115  swrdsbslen  11122  swrdspsleq  11123  uzin2  11331  2zsupmax  11570  2zinfmin  11587  sumeq2  11703  summodclem2a  11725  fsum3  11731  fsumcl2lem  11742  fsumadd  11750  sumsnf  11753  fsummulc2  11792  explecnv  11849  prodeq2  11901  prodmodclem3  11919  prodmodclem2a  11920  fprodseq  11927  prod1dc  11930  fprodmul  11935  prodsnf  11936  pcdvdsb  12676  pcmpt2  12700  pcmptdvds  12701  pcprod  12702  pcfac  12706  1arithlem4  12722  plyaddlem1  15252  plyaddlem  15254
  Copyright terms: Public domain W3C validator