ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdcle Unicode version

Theorem zdcle 9402
Description: Integer  <_ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
Assertion
Ref Expression
zdcle  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )

Proof of Theorem zdcle
StepHypRef Expression
1 ztri3or 9369 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2 zre 9330 . . 3  |-  ( A  e.  ZZ  ->  A  e.  RR )
3 zre 9330 . . 3  |-  ( B  e.  ZZ  ->  B  e.  RR )
4 ltle 8114 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
5 orc 713 . . . . . 6  |-  ( A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
6 df-dc 836 . . . . . 6  |-  (DECID  A  <_  B 
<->  ( A  <_  B  \/  -.  A  <_  B
) )
75, 6sylibr 134 . . . . 5  |-  ( A  <_  B  -> DECID  A  <_  B )
84, 7syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> DECID  A  <_  B ) )
9 eqle 8118 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
109, 7syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  -> DECID  A  <_  B )
1110ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  -> DECID  A  <_  B ) )
1211adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  -> DECID 
A  <_  B )
)
13 lenlt 8102 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
1413biimpd 144 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  -.  B  <  A
) )
1514con2d 625 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  ->  -.  A  <_  B
) )
16 olc 712 . . . . . 6  |-  ( -.  A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
1716, 6sylibr 134 . . . . 5  |-  ( -.  A  <_  B  -> DECID  A  <_  B )
1815, 17syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  -> DECID  A  <_  B ) )
198, 12, 183jaod 1315 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <_  B ) )
202, 3, 19syl2an 289 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <_  B ) )
211, 20mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2167   class class class wbr 4033   RRcr 7878    < clt 8061    <_ cle 8062   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  uzin  9634  xnn0dcle  9877  nelfzo  10227  exfzdc  10316  infssuzex  10323  modfzo0difsn  10487  fzfig  10522  iseqf1olemjpcl  10600  iseqf1olemqpcl  10601  seq3f1oleml  10608  seq3f1o  10609  fser0const  10627  uzin2  11152  2zsupmax  11391  2zinfmin  11408  sumeq2  11524  summodclem2a  11546  fsum3  11552  fsumcl2lem  11563  fsumadd  11571  sumsnf  11574  fsummulc2  11613  explecnv  11670  prodeq2  11722  prodmodclem3  11740  prodmodclem2a  11741  fprodseq  11748  prod1dc  11751  fprodmul  11756  prodsnf  11757  pcdvdsb  12489  pcmpt2  12513  pcmptdvds  12514  pcprod  12515  pcfac  12519  1arithlem4  12535  plyaddlem1  14983  plyaddlem  14985
  Copyright terms: Public domain W3C validator