ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdcle Unicode version

Theorem zdcle 9396
Description: Integer  <_ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
Assertion
Ref Expression
zdcle  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )

Proof of Theorem zdcle
StepHypRef Expression
1 ztri3or 9363 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2 zre 9324 . . 3  |-  ( A  e.  ZZ  ->  A  e.  RR )
3 zre 9324 . . 3  |-  ( B  e.  ZZ  ->  B  e.  RR )
4 ltle 8109 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
5 orc 713 . . . . . 6  |-  ( A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
6 df-dc 836 . . . . . 6  |-  (DECID  A  <_  B 
<->  ( A  <_  B  \/  -.  A  <_  B
) )
75, 6sylibr 134 . . . . 5  |-  ( A  <_  B  -> DECID  A  <_  B )
84, 7syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> DECID  A  <_  B ) )
9 eqle 8113 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
109, 7syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  -> DECID  A  <_  B )
1110ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  -> DECID  A  <_  B ) )
1211adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  -> DECID 
A  <_  B )
)
13 lenlt 8097 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
1413biimpd 144 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  -.  B  <  A
) )
1514con2d 625 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  ->  -.  A  <_  B
) )
16 olc 712 . . . . . 6  |-  ( -.  A  <_  B  ->  ( A  <_  B  \/  -.  A  <_  B ) )
1716, 6sylibr 134 . . . . 5  |-  ( -.  A  <_  B  -> DECID  A  <_  B )
1815, 17syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  -> DECID  A  <_  B ) )
198, 12, 183jaod 1315 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <_  B ) )
202, 3, 19syl2an 289 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <_  B ) )
211, 20mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2164   class class class wbr 4030   RRcr 7873    < clt 8056    <_ cle 8057   ZZcz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321
This theorem is referenced by:  uzin  9628  xnn0dcle  9871  nelfzo  10221  exfzdc  10310  modfzo0difsn  10469  fzfig  10504  iseqf1olemjpcl  10582  iseqf1olemqpcl  10583  seq3f1oleml  10590  seq3f1o  10591  fser0const  10609  uzin2  11134  2zsupmax  11372  2zinfmin  11389  sumeq2  11505  summodclem2a  11527  fsum3  11533  fsumcl2lem  11544  fsumadd  11552  sumsnf  11555  fsummulc2  11594  explecnv  11651  prodeq2  11703  prodmodclem3  11721  prodmodclem2a  11722  fprodseq  11729  prod1dc  11732  fprodmul  11737  prodsnf  11738  infssuzex  12089  pcdvdsb  12461  pcmpt2  12485  pcmptdvds  12486  pcprod  12487  pcfac  12491  1arithlem4  12507  plyaddlem1  14926  plyaddlem  14928
  Copyright terms: Public domain W3C validator