ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnnz Unicode version

Theorem btwnnz 9252
Description: A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
btwnnz  |-  ( ( A  e.  ZZ  /\  A  <  B  /\  B  <  ( A  +  1 ) )  ->  -.  B  e.  ZZ )

Proof of Theorem btwnnz
StepHypRef Expression
1 zltp1le 9215 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  ( A  +  1 )  <_  B ) )
2 peano2z 9197 . . . . . . . 8  |-  ( A  e.  ZZ  ->  ( A  +  1 )  e.  ZZ )
3 zre 9165 . . . . . . . 8  |-  ( ( A  +  1 )  e.  ZZ  ->  ( A  +  1 )  e.  RR )
42, 3syl 14 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  +  1 )  e.  RR )
5 zre 9165 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  RR )
6 lenlt 7947 . . . . . . 7  |-  ( ( ( A  +  1 )  e.  RR  /\  B  e.  RR )  ->  ( ( A  + 
1 )  <_  B  <->  -.  B  <  ( A  +  1 ) ) )
74, 5, 6syl2an 287 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  + 
1 )  <_  B  <->  -.  B  <  ( A  +  1 ) ) )
81, 7bitrd 187 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  -.  B  <  ( A  +  1 ) ) )
98biimpd 143 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  -.  B  <  ( A  +  1 ) ) )
109impancom 258 . . 3  |-  ( ( A  e.  ZZ  /\  A  <  B )  -> 
( B  e.  ZZ  ->  -.  B  <  ( A  +  1 ) ) )
1110con2d 614 . 2  |-  ( ( A  e.  ZZ  /\  A  <  B )  -> 
( B  <  ( A  +  1 )  ->  -.  B  e.  ZZ ) )
12113impia 1182 1  |-  ( ( A  e.  ZZ  /\  A  <  B  /\  B  <  ( A  +  1 ) )  ->  -.  B  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    e. wcel 2128   class class class wbr 3965  (class class class)co 5821   RRcr 7725   1c1 7727    + caddc 7729    < clt 7906    <_ cle 7907   ZZcz 9161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-inn 8828  df-n0 9085  df-z 9162
This theorem is referenced by:  gtndiv  9253  3halfnz  9255  seq3coll  10706  nonsq  12072
  Copyright terms: Public domain W3C validator