ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurcl Unicode version

Theorem djurcl 7219
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djurcl  |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B ) )

Proof of Theorem djurcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . 3  |-  ( C  e.  B  ->  C  e.  _V )
2 1oex 6570 . . . . 5  |-  1o  e.  _V
32snid 3697 . . . 4  |-  1o  e.  { 1o }
4 opelxpi 4751 . . . 4  |-  ( ( 1o  e.  { 1o }  /\  C  e.  B
)  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
53, 4mpan 424 . . 3  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
6 opeq2 3858 . . . 4  |-  ( x  =  C  ->  <. 1o ,  x >.  =  <. 1o ,  C >. )
7 df-inr 7215 . . . 4  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
86, 7fvmptg 5710 . . 3  |-  ( ( C  e.  _V  /\  <. 1o ,  C >.  e.  ( { 1o }  X.  B ) )  -> 
(inr `  C )  =  <. 1o ,  C >. )
91, 5, 8syl2anc 411 . 2  |-  ( C  e.  B  ->  (inr `  C )  =  <. 1o ,  C >. )
10 elun2 3372 . . . 4  |-  ( <. 1o ,  C >.  e.  ( { 1o }  X.  B )  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
115, 10syl 14 . . 3  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
12 df-dju 7205 . . 3  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1311, 12eleqtrrdi 2323 . 2  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( A B ) )
149, 13eqeltrd 2306 1  |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    u. cun 3195   (/)c0 3491   {csn 3666   <.cop 3669    X. cxp 4717   ` cfv 5318   1oc1o 6555   ⊔ cdju 7204  inrcinr 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-1o 6562  df-dju 7205  df-inr 7215
This theorem is referenced by:  updjudhcoinrg  7248  omp1eomlem  7261  difinfsnlem  7266  difinfsn  7267  0ct  7274  ctmlemr  7275  ctssdclemn0  7277  exmidfodomrlemr  7380  exmidfodomrlemrALT  7381
  Copyright terms: Public domain W3C validator