ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurcl Unicode version

Theorem djurcl 7156
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djurcl  |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B ) )

Proof of Theorem djurcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2783 . . 3  |-  ( C  e.  B  ->  C  e.  _V )
2 1oex 6512 . . . . 5  |-  1o  e.  _V
32snid 3664 . . . 4  |-  1o  e.  { 1o }
4 opelxpi 4708 . . . 4  |-  ( ( 1o  e.  { 1o }  /\  C  e.  B
)  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
53, 4mpan 424 . . 3  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
6 opeq2 3820 . . . 4  |-  ( x  =  C  ->  <. 1o ,  x >.  =  <. 1o ,  C >. )
7 df-inr 7152 . . . 4  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
86, 7fvmptg 5657 . . 3  |-  ( ( C  e.  _V  /\  <. 1o ,  C >.  e.  ( { 1o }  X.  B ) )  -> 
(inr `  C )  =  <. 1o ,  C >. )
91, 5, 8syl2anc 411 . 2  |-  ( C  e.  B  ->  (inr `  C )  =  <. 1o ,  C >. )
10 elun2 3341 . . . 4  |-  ( <. 1o ,  C >.  e.  ( { 1o }  X.  B )  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
115, 10syl 14 . . 3  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
12 df-dju 7142 . . 3  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1311, 12eleqtrrdi 2299 . 2  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( A B ) )
149, 13eqeltrd 2282 1  |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    u. cun 3164   (/)c0 3460   {csn 3633   <.cop 3636    X. cxp 4674   ` cfv 5272   1oc1o 6497   ⊔ cdju 7141  inrcinr 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-1o 6504  df-dju 7142  df-inr 7152
This theorem is referenced by:  updjudhcoinrg  7185  omp1eomlem  7198  difinfsnlem  7203  difinfsn  7204  0ct  7211  ctmlemr  7212  ctssdclemn0  7214  exmidfodomrlemr  7312  exmidfodomrlemrALT  7313
  Copyright terms: Public domain W3C validator