| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dminxp | GIF version | ||
| Description: Domain of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) |
| Ref | Expression |
|---|---|
| dminxp | ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 4875 | . . . 4 ⊢ dom (𝐶 ∩ (𝐴 × 𝐵)) = ran ◡(𝐶 ∩ (𝐴 × 𝐵)) | |
| 2 | cnvin 5095 | . . . . . 6 ⊢ ◡(𝐶 ∩ (𝐴 × 𝐵)) = (◡𝐶 ∩ ◡(𝐴 × 𝐵)) | |
| 3 | cnvxp 5106 | . . . . . . 7 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 4 | 3 | ineq2i 3372 | . . . . . 6 ⊢ (◡𝐶 ∩ ◡(𝐴 × 𝐵)) = (◡𝐶 ∩ (𝐵 × 𝐴)) |
| 5 | 2, 4 | eqtri 2227 | . . . . 5 ⊢ ◡(𝐶 ∩ (𝐴 × 𝐵)) = (◡𝐶 ∩ (𝐵 × 𝐴)) |
| 6 | 5 | rneqi 4911 | . . . 4 ⊢ ran ◡(𝐶 ∩ (𝐴 × 𝐵)) = ran (◡𝐶 ∩ (𝐵 × 𝐴)) |
| 7 | 1, 6 | eqtri 2227 | . . 3 ⊢ dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (◡𝐶 ∩ (𝐵 × 𝐴)) |
| 8 | 7 | eqeq1i 2214 | . 2 ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ran (◡𝐶 ∩ (𝐵 × 𝐴)) = 𝐴) |
| 9 | rninxp 5131 | . 2 ⊢ (ran (◡𝐶 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥) | |
| 10 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 11 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | 10, 11 | brcnv 4865 | . . . 4 ⊢ (𝑦◡𝐶𝑥 ↔ 𝑥𝐶𝑦) |
| 13 | 12 | rexbii 2514 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
| 14 | 13 | ralbii 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
| 15 | 8, 9, 14 | 3bitri 206 | 1 ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∀wral 2485 ∃wrex 2486 ∩ cin 3166 class class class wbr 4047 × cxp 4677 ◡ccnv 4678 dom cdm 4679 ran crn 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |