![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dminxp | GIF version |
Description: Domain of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
dminxp | ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 4854 | . . . 4 ⊢ dom (𝐶 ∩ (𝐴 × 𝐵)) = ran ◡(𝐶 ∩ (𝐴 × 𝐵)) | |
2 | cnvin 5073 | . . . . . 6 ⊢ ◡(𝐶 ∩ (𝐴 × 𝐵)) = (◡𝐶 ∩ ◡(𝐴 × 𝐵)) | |
3 | cnvxp 5084 | . . . . . . 7 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
4 | 3 | ineq2i 3357 | . . . . . 6 ⊢ (◡𝐶 ∩ ◡(𝐴 × 𝐵)) = (◡𝐶 ∩ (𝐵 × 𝐴)) |
5 | 2, 4 | eqtri 2214 | . . . . 5 ⊢ ◡(𝐶 ∩ (𝐴 × 𝐵)) = (◡𝐶 ∩ (𝐵 × 𝐴)) |
6 | 5 | rneqi 4890 | . . . 4 ⊢ ran ◡(𝐶 ∩ (𝐴 × 𝐵)) = ran (◡𝐶 ∩ (𝐵 × 𝐴)) |
7 | 1, 6 | eqtri 2214 | . . 3 ⊢ dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (◡𝐶 ∩ (𝐵 × 𝐴)) |
8 | 7 | eqeq1i 2201 | . 2 ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ran (◡𝐶 ∩ (𝐵 × 𝐴)) = 𝐴) |
9 | rninxp 5109 | . 2 ⊢ (ran (◡𝐶 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥) | |
10 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
11 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 10, 11 | brcnv 4845 | . . . 4 ⊢ (𝑦◡𝐶𝑥 ↔ 𝑥𝐶𝑦) |
13 | 12 | rexbii 2501 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
14 | 13 | ralbii 2500 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
15 | 8, 9, 14 | 3bitri 206 | 1 ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∀wral 2472 ∃wrex 2473 ∩ cin 3152 class class class wbr 4029 × cxp 4657 ◡ccnv 4658 dom cdm 4659 ran crn 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |