ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmuni GIF version

Theorem dmuni 4876
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
Assertion
Ref Expression
dmuni dom 𝐴 = 𝑥𝐴 dom 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem dmuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 1678 . . . . 5 (∃𝑧𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ ∃𝑥𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
2 ancom 266 . . . . . . 7 ((∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ (𝑥𝐴 ∧ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥))
3 19.41v 1917 . . . . . . 7 (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
4 vex 2766 . . . . . . . . 9 𝑦 ∈ V
54eldm2 4864 . . . . . . . 8 (𝑦 ∈ dom 𝑥 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥)
65anbi2i 457 . . . . . . 7 ((𝑥𝐴𝑦 ∈ dom 𝑥) ↔ (𝑥𝐴 ∧ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥))
72, 3, 63bitr4i 212 . . . . . 6 (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ (𝑥𝐴𝑦 ∈ dom 𝑥))
87exbii 1619 . . . . 5 (∃𝑥𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ dom 𝑥))
91, 8bitri 184 . . . 4 (∃𝑧𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ dom 𝑥))
10 eluni 3842 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
1110exbii 1619 . . . 4 (∃𝑧𝑦, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑧𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
12 df-rex 2481 . . . 4 (∃𝑥𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑥(𝑥𝐴𝑦 ∈ dom 𝑥))
139, 11, 123bitr4i 212 . . 3 (∃𝑧𝑦, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝑥)
144eldm2 4864 . . 3 (𝑦 ∈ dom 𝐴 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐴)
15 eliun 3920 . . 3 (𝑦 𝑥𝐴 dom 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝑥)
1613, 14, 153bitr4i 212 . 2 (𝑦 ∈ dom 𝐴𝑦 𝑥𝐴 dom 𝑥)
1716eqriv 2193 1 dom 𝐴 = 𝑥𝐴 dom 𝑥
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  wrex 2476  cop 3625   cuni 3839   ciun 3916  dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-dm 4673
This theorem is referenced by:  tfrlem8  6376  tfrlemi14d  6391  tfr1onlemres  6407  tfrcllemres  6420
  Copyright terms: Public domain W3C validator