![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmuni | GIF version |
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
Ref | Expression |
---|---|
dmuni | ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 1625 | . . . . 5 ⊢ (∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | ancom 264 | . . . . . . 7 ⊢ ((∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥)) | |
3 | 19.41v 1856 | . . . . . . 7 ⊢ (∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
4 | vex 2660 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
5 | 4 | eldm2 4697 | . . . . . . . 8 ⊢ (𝑦 ∈ dom 𝑥 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥) |
6 | 5 | anbi2i 450 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥)) |
7 | 2, 3, 6 | 3bitr4i 211 | . . . . . 6 ⊢ (∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
8 | 7 | exbii 1567 | . . . . 5 ⊢ (∃𝑥∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
9 | 1, 8 | bitri 183 | . . . 4 ⊢ (∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
10 | eluni 3705 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
11 | 10 | exbii 1567 | . . . 4 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
12 | df-rex 2396 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) | |
13 | 9, 11, 12 | 3bitr4i 211 | . . 3 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) |
14 | 4 | eldm2 4697 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴) |
15 | eliun 3783 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) | |
16 | 13, 14, 15 | 3bitr4i 211 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥) |
17 | 16 | eqriv 2112 | 1 ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1314 ∃wex 1451 ∈ wcel 1463 ∃wrex 2391 〈cop 3496 ∪ cuni 3702 ∪ ciun 3779 dom cdm 4499 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-iun 3781 df-br 3896 df-dm 4509 |
This theorem is referenced by: tfrlem8 6169 tfrlemi14d 6184 tfr1onlemres 6200 tfrcllemres 6213 |
Copyright terms: Public domain | W3C validator |