| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmuni | GIF version | ||
| Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
| Ref | Expression |
|---|---|
| dmuni | ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 1710 | . . . . 5 ⊢ (∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
| 2 | ancom 266 | . . . . . . 7 ⊢ ((∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥)) | |
| 3 | 19.41v 1949 | . . . . . . 7 ⊢ (∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
| 4 | vex 2802 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 5 | 4 | eldm2 4921 | . . . . . . . 8 ⊢ (𝑦 ∈ dom 𝑥 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥) |
| 6 | 5 | anbi2i 457 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥)) |
| 7 | 2, 3, 6 | 3bitr4i 212 | . . . . . 6 ⊢ (∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
| 8 | 7 | exbii 1651 | . . . . 5 ⊢ (∃𝑥∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
| 9 | 1, 8 | bitri 184 | . . . 4 ⊢ (∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
| 10 | eluni 3891 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
| 11 | 10 | exbii 1651 | . . . 4 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
| 12 | df-rex 2514 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) | |
| 13 | 9, 11, 12 | 3bitr4i 212 | . . 3 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) |
| 14 | 4 | eldm2 4921 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴) |
| 15 | eliun 3969 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) | |
| 16 | 13, 14, 15 | 3bitr4i 212 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥) |
| 17 | 16 | eqriv 2226 | 1 ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∃wrex 2509 〈cop 3669 ∪ cuni 3888 ∪ ciun 3965 dom cdm 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-dm 4729 |
| This theorem is referenced by: tfrlem8 6470 tfrlemi14d 6485 tfr1onlemres 6501 tfrcllemres 6514 |
| Copyright terms: Public domain | W3C validator |