![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmuni | GIF version |
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
Ref | Expression |
---|---|
dmuni | ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 1675 | . . . . 5 ⊢ (∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | ancom 266 | . . . . . . 7 ⊢ ((∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥)) | |
3 | 19.41v 1914 | . . . . . . 7 ⊢ (∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
4 | vex 2763 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
5 | 4 | eldm2 4860 | . . . . . . . 8 ⊢ (𝑦 ∈ dom 𝑥 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥) |
6 | 5 | anbi2i 457 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝑥)) |
7 | 2, 3, 6 | 3bitr4i 212 | . . . . . 6 ⊢ (∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
8 | 7 | exbii 1616 | . . . . 5 ⊢ (∃𝑥∃𝑧(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
9 | 1, 8 | bitri 184 | . . . 4 ⊢ (∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
10 | eluni 3838 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
11 | 10 | exbii 1616 | . . . 4 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑧∃𝑥(〈𝑦, 𝑧〉 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
12 | df-rex 2478 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) | |
13 | 9, 11, 12 | 3bitr4i 212 | . . 3 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) |
14 | 4 | eldm2 4860 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝐴) |
15 | eliun 3916 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) | |
16 | 13, 14, 15 | 3bitr4i 212 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥) |
17 | 16 | eqriv 2190 | 1 ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∃wrex 2473 〈cop 3621 ∪ cuni 3835 ∪ ciun 3912 dom cdm 4659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-dm 4669 |
This theorem is referenced by: tfrlem8 6371 tfrlemi14d 6386 tfr1onlemres 6402 tfrcllemres 6415 |
Copyright terms: Public domain | W3C validator |