![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmuni | GIF version |
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
Ref | Expression |
---|---|
dmuni | ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 1664 | . . . . 5 ⊢ (∃𝑧∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | ancom 266 | . . . . . . 7 ⊢ ((∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥)) | |
3 | 19.41v 1902 | . . . . . . 7 ⊢ (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
4 | vex 2742 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
5 | 4 | eldm2 4827 | . . . . . . . 8 ⊢ (𝑦 ∈ dom 𝑥 ↔ ∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥) |
6 | 5 | anbi2i 457 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝑥)) |
7 | 2, 3, 6 | 3bitr4i 212 | . . . . . 6 ⊢ (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
8 | 7 | exbii 1605 | . . . . 5 ⊢ (∃𝑥∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
9 | 1, 8 | bitri 184 | . . . 4 ⊢ (∃𝑧∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) |
10 | eluni 3814 | . . . . 5 ⊢ (⟨𝑦, 𝑧⟩ ∈ ∪ 𝐴 ↔ ∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
11 | 10 | exbii 1605 | . . . 4 ⊢ (∃𝑧⟨𝑦, 𝑧⟩ ∈ ∪ 𝐴 ↔ ∃𝑧∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
12 | df-rex 2461 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝑥)) | |
13 | 9, 11, 12 | 3bitr4i 212 | . . 3 ⊢ (∃𝑧⟨𝑦, 𝑧⟩ ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) |
14 | 4 | eldm2 4827 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ ∃𝑧⟨𝑦, 𝑧⟩ ∈ ∪ 𝐴) |
15 | eliun 3892 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥) | |
16 | 13, 14, 15 | 3bitr4i 212 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝑥) |
17 | 16 | eqriv 2174 | 1 ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 ⟨cop 3597 ∪ cuni 3811 ∪ ciun 3888 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-dm 4638 |
This theorem is referenced by: tfrlem8 6321 tfrlemi14d 6336 tfr1onlemres 6352 tfrcllemres 6365 |
Copyright terms: Public domain | W3C validator |