Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divconjdvds | Unicode version |
Description: If a nonzero integer divides another integer , the other integer divided by the nonzero integer (i.e. the divisor conjugate of to ) divides the other integer . Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.) |
Ref | Expression |
---|---|
divconjdvds |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdszrcl 11754 | . . 3 | |
2 | simpll 524 | . . . . . . . 8 | |
3 | oveq1 5860 | . . . . . . . . . 10 | |
4 | 3 | eqeq1d 2179 | . . . . . . . . 9 |
5 | 4 | adantl 275 | . . . . . . . 8 |
6 | zcn 9217 | . . . . . . . . . . 11 | |
7 | 6 | adantl 275 | . . . . . . . . . 10 |
8 | 7 | adantr 274 | . . . . . . . . 9 |
9 | zcn 9217 | . . . . . . . . . . 11 | |
10 | 9 | adantr 274 | . . . . . . . . . 10 |
11 | 10 | adantr 274 | . . . . . . . . 9 |
12 | 0z 9223 | . . . . . . . . . . . 12 | |
13 | zapne 9286 | . . . . . . . . . . . 12 # | |
14 | 12, 13 | mpan2 423 | . . . . . . . . . . 11 # |
15 | 14 | adantr 274 | . . . . . . . . . 10 # |
16 | 15 | biimpar 295 | . . . . . . . . 9 # |
17 | 8, 11, 16 | divcanap2d 8709 | . . . . . . . 8 |
18 | 2, 5, 17 | rspcedvd 2840 | . . . . . . 7 |
19 | 18 | adantr 274 | . . . . . 6 |
20 | simpr 109 | . . . . . . . 8 | |
21 | simpr 109 | . . . . . . . . . . 11 | |
22 | simpr 109 | . . . . . . . . . . . 12 | |
23 | 22 | adantr 274 | . . . . . . . . . . 11 |
24 | 2, 21, 23 | 3jca 1172 | . . . . . . . . . 10 |
25 | 24 | adantr 274 | . . . . . . . . 9 |
26 | dvdsval2 11752 | . . . . . . . . 9 | |
27 | 25, 26 | syl 14 | . . . . . . . 8 |
28 | 20, 27 | mpbid 146 | . . . . . . 7 |
29 | 23 | adantr 274 | . . . . . . 7 |
30 | divides 11751 | . . . . . . 7 | |
31 | 28, 29, 30 | syl2anc 409 | . . . . . 6 |
32 | 19, 31 | mpbird 166 | . . . . 5 |
33 | 32 | exp31 362 | . . . 4 |
34 | 33 | com3r 79 | . . 3 |
35 | 1, 34 | mpd 13 | . 2 |
36 | 35 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wne 2340 wrex 2449 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 cmul 7779 # cap 8500 cdiv 8589 cz 9212 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-dvds 11750 |
This theorem is referenced by: dvdsdivcl 11810 isprm5lem 12095 |
Copyright terms: Public domain | W3C validator |