ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divconjdvds Unicode version

Theorem divconjdvds 11809
Description: If a nonzero integer  M divides another integer  N, the other integer  N divided by the nonzero integer  M (i.e. the divisor conjugate of  N to  M) divides the other integer  N. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
divconjdvds  |-  ( ( M  ||  N  /\  M  =/=  0 )  -> 
( N  /  M
)  ||  N )

Proof of Theorem divconjdvds
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 11754 . . 3  |-  ( M 
||  N  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 simpll 524 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M  e.  ZZ )
3 oveq1 5860 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m  x.  ( N  /  M ) )  =  ( M  x.  ( N  /  M
) ) )
43eqeq1d 2179 . . . . . . . . 9  |-  ( m  =  M  ->  (
( m  x.  ( N  /  M ) )  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
54adantl 275 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  m  =  M )  ->  (
( m  x.  ( N  /  M ) )  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
6 zcn 9217 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
76adantl 275 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
87adantr 274 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  N  e.  CC )
9 zcn 9217 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
109adantr 274 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
1110adantr 274 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M  e.  CC )
12 0z 9223 . . . . . . . . . . . 12  |-  0  e.  ZZ
13 zapne 9286 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
1412, 13mpan2 423 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M #  0  <->  M  =/=  0
) )
1514adantr 274 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
1615biimpar 295 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M #  0
)
178, 11, 16divcanap2d 8709 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  ( M  x.  ( N  /  M
) )  =  N )
182, 5, 17rspcedvd 2840 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  E. m  e.  ZZ  ( m  x.  ( N  /  M
) )  =  N )
1918adantr 274 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  E. m  e.  ZZ  ( m  x.  ( N  /  M
) )  =  N )
20 simpr 109 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  M  ||  N )
21 simpr 109 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M  =/=  0 )
22 simpr 109 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
2322adantr 274 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  N  e.  ZZ )
242, 21, 233jca 1172 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ ) )
2524adantr 274 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ ) )
26 dvdsval2 11752 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
2725, 26syl 14 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
2820, 27mpbid 146 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( N  /  M )  e.  ZZ )
2923adantr 274 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  N  e.  ZZ )
30 divides 11751 . . . . . . 7  |-  ( ( ( N  /  M
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  /  M )  ||  N  <->  E. m  e.  ZZ  (
m  x.  ( N  /  M ) )  =  N ) )
3128, 29, 30syl2anc 409 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  (
( N  /  M
)  ||  N  <->  E. m  e.  ZZ  ( m  x.  ( N  /  M
) )  =  N ) )
3219, 31mpbird 166 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( N  /  M )  ||  N )
3332exp31 362 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =/=  0  ->  ( M  ||  N  ->  ( N  /  M
)  ||  N )
) )
3433com3r 79 . . 3  |-  ( M 
||  N  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =/=  0  ->  ( N  /  M )  ||  N
) ) )
351, 34mpd 13 . 2  |-  ( M 
||  N  ->  ( M  =/=  0  ->  ( N  /  M )  ||  N ) )
3635imp 123 1  |-  ( ( M  ||  N  /\  M  =/=  0 )  -> 
( N  /  M
)  ||  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   E.wrex 2449   class class class wbr 3989  (class class class)co 5853   CCcc 7772   0cc0 7774    x. cmul 7779   # cap 8500    / cdiv 8589   ZZcz 9212    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-dvds 11750
This theorem is referenced by:  dvdsdivcl  11810  isprm5lem  12095
  Copyright terms: Public domain W3C validator