ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divconjdvds Unicode version

Theorem divconjdvds 12346
Description: If a nonzero integer  M divides another integer  N, the other integer  N divided by the nonzero integer  M (i.e. the divisor conjugate of  N to  M) divides the other integer  N. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
divconjdvds  |-  ( ( M  ||  N  /\  M  =/=  0 )  -> 
( N  /  M
)  ||  N )

Proof of Theorem divconjdvds
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 12289 . . 3  |-  ( M 
||  N  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 simpll 527 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M  e.  ZZ )
3 oveq1 6001 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m  x.  ( N  /  M ) )  =  ( M  x.  ( N  /  M
) ) )
43eqeq1d 2238 . . . . . . . . 9  |-  ( m  =  M  ->  (
( m  x.  ( N  /  M ) )  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
54adantl 277 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  m  =  M )  ->  (
( m  x.  ( N  /  M ) )  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
6 zcn 9439 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
76adantl 277 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
87adantr 276 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  N  e.  CC )
9 zcn 9439 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
109adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
1110adantr 276 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M  e.  CC )
12 0z 9445 . . . . . . . . . . . 12  |-  0  e.  ZZ
13 zapne 9509 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
1412, 13mpan2 425 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M #  0  <->  M  =/=  0
) )
1514adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
1615biimpar 297 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M #  0
)
178, 11, 16divcanap2d 8927 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  ( M  x.  ( N  /  M
) )  =  N )
182, 5, 17rspcedvd 2913 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  E. m  e.  ZZ  ( m  x.  ( N  /  M
) )  =  N )
1918adantr 276 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  E. m  e.  ZZ  ( m  x.  ( N  /  M
) )  =  N )
20 simpr 110 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  M  ||  N )
21 simpr 110 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M  =/=  0 )
22 simpr 110 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
2322adantr 276 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  N  e.  ZZ )
242, 21, 233jca 1201 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ ) )
2524adantr 276 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ ) )
26 dvdsval2 12287 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
2725, 26syl 14 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
2820, 27mpbid 147 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( N  /  M )  e.  ZZ )
2923adantr 276 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  N  e.  ZZ )
30 divides 12286 . . . . . . 7  |-  ( ( ( N  /  M
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  /  M )  ||  N  <->  E. m  e.  ZZ  (
m  x.  ( N  /  M ) )  =  N ) )
3128, 29, 30syl2anc 411 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  (
( N  /  M
)  ||  N  <->  E. m  e.  ZZ  ( m  x.  ( N  /  M
) )  =  N ) )
3219, 31mpbird 167 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( N  /  M )  ||  N )
3332exp31 364 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =/=  0  ->  ( M  ||  N  ->  ( N  /  M
)  ||  N )
) )
3433com3r 79 . . 3  |-  ( M 
||  N  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =/=  0  ->  ( N  /  M )  ||  N
) ) )
351, 34mpd 13 . 2  |-  ( M 
||  N  ->  ( M  =/=  0  ->  ( N  /  M )  ||  N ) )
3635imp 124 1  |-  ( ( M  ||  N  /\  M  =/=  0 )  -> 
( N  /  M
)  ||  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   class class class wbr 4082  (class class class)co 5994   CCcc 7985   0cc0 7987    x. cmul 7992   # cap 8716    / cdiv 8807   ZZcz 9434    || cdvds 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-dvds 12285
This theorem is referenced by:  dvdsdivcl  12347  isprm5lem  12649
  Copyright terms: Public domain W3C validator