ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabd Unicode version

Theorem elrabd 2922
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2920. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elrabd.1  |-  ( x  =  A  ->  ( ps 
<->  ch ) )
elrabd.2  |-  ( ph  ->  A  e.  B )
elrabd.3  |-  ( ph  ->  ch )
Assertion
Ref Expression
elrabd  |-  ( ph  ->  A  e.  { x  e.  B  |  ps } )
Distinct variable groups:    x, A    x, B    ch, x
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem elrabd
StepHypRef Expression
1 elrabd.2 . . 3  |-  ( ph  ->  A  e.  B )
2 elrabd.3 . . 3  |-  ( ph  ->  ch )
31, 2jca 306 . 2  |-  ( ph  ->  ( A  e.  B  /\  ch ) )
4 elrabd.1 . . 3  |-  ( x  =  A  ->  ( ps 
<->  ch ) )
54elrab 2920 . 2  |-  ( A  e.  { x  e.  B  |  ps }  <->  ( A  e.  B  /\  ch ) )
63, 5sylibr 134 1  |-  ( ph  ->  A  e.  { x  e.  B  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765
This theorem is referenced by:  ctssdccl  7186  suplocexprlemru  7803  suplocexprlemloc  7805  zsupssdc  10345  uzwodc  12229  nninfctlemfo  12232  lcmcllem  12260  lcmledvds  12263  phisum  12434  odzcllem  12436  pcpremul  12487  znnen  12640  ennnfonelemj0  12643  ennnfonelemg  12645  gsumress  13097  issubmd  13176  mhmeql  13194  ghmeql  13473  cdivcncfap  14924  cnopnap  14931  ivthinc  14963  limcdifap  14982  limcimolemlt  14984  dvcoapbr  15027  dvdsppwf1o  15309  2lgslem1b  15414  2omap  15726  subctctexmid  15731
  Copyright terms: Public domain W3C validator