| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabd | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2959. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elrabd.1 |
|
| elrabd.2 |
|
| elrabd.3 |
|
| Ref | Expression |
|---|---|
| elrabd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabd.2 |
. . 3
| |
| 2 | elrabd.3 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | elrabd.1 |
. . 3
| |
| 5 | 4 | elrab 2959 |
. 2
|
| 6 | 3, 5 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 |
| This theorem is referenced by: ctssdccl 7278 suplocexprlemru 7906 suplocexprlemloc 7908 zsupssdc 10458 uzwodc 12558 nninfctlemfo 12561 lcmcllem 12589 lcmledvds 12592 phisum 12763 odzcllem 12765 pcpremul 12816 znnen 12969 ennnfonelemj0 12972 ennnfonelemg 12974 gsumress 13428 issubmd 13507 mhmeql 13525 ghmeql 13804 cdivcncfap 15278 cnopnap 15285 ivthinc 15317 limcdifap 15336 limcimolemlt 15338 dvcoapbr 15381 dvdsppwf1o 15663 2lgslem1b 15768 incistruhgr 15890 upgr1elem1 15920 2omap 16359 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |