| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabd | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2936. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elrabd.1 |
|
| elrabd.2 |
|
| elrabd.3 |
|
| Ref | Expression |
|---|---|
| elrabd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabd.2 |
. . 3
| |
| 2 | elrabd.3 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | elrabd.1 |
. . 3
| |
| 5 | 4 | elrab 2936 |
. 2
|
| 6 | 3, 5 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 |
| This theorem is referenced by: ctssdccl 7239 suplocexprlemru 7867 suplocexprlemloc 7869 zsupssdc 10418 uzwodc 12473 nninfctlemfo 12476 lcmcllem 12504 lcmledvds 12507 phisum 12678 odzcllem 12680 pcpremul 12731 znnen 12884 ennnfonelemj0 12887 ennnfonelemg 12889 gsumress 13342 issubmd 13421 mhmeql 13439 ghmeql 13718 cdivcncfap 15191 cnopnap 15198 ivthinc 15230 limcdifap 15249 limcimolemlt 15251 dvcoapbr 15294 dvdsppwf1o 15576 2lgslem1b 15681 incistruhgr 15801 upgr1elem1 15828 2omap 16132 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |