Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrabd | Unicode version |
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2881. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elrabd.1 | |
elrabd.2 | |
elrabd.3 |
Ref | Expression |
---|---|
elrabd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabd.2 | . . 3 | |
2 | elrabd.3 | . . 3 | |
3 | 1, 2 | jca 304 | . 2 |
4 | elrabd.1 | . . 3 | |
5 | 4 | elrab 2881 | . 2 |
6 | 3, 5 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 crab 2447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rab 2452 df-v 2727 |
This theorem is referenced by: ctssdccl 7072 suplocexprlemru 7656 suplocexprlemloc 7658 zsupssdc 11883 uzwodc 11966 phisum 12168 odzcllem 12170 pcpremul 12221 znnen 12327 ennnfonelemj0 12330 ennnfonelemg 12332 cdivcncfap 13187 cnopnap 13194 ivthinc 13221 limcdifap 13231 limcimolemlt 13233 dvcoapbr 13271 subctctexmid 13841 |
Copyright terms: Public domain | W3C validator |