| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabd | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2929. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elrabd.1 |
|
| elrabd.2 |
|
| elrabd.3 |
|
| Ref | Expression |
|---|---|
| elrabd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabd.2 |
. . 3
| |
| 2 | elrabd.3 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | elrabd.1 |
. . 3
| |
| 5 | 4 | elrab 2929 |
. 2
|
| 6 | 3, 5 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 |
| This theorem is referenced by: ctssdccl 7215 suplocexprlemru 7834 suplocexprlemloc 7836 zsupssdc 10383 uzwodc 12391 nninfctlemfo 12394 lcmcllem 12422 lcmledvds 12425 phisum 12596 odzcllem 12598 pcpremul 12649 znnen 12802 ennnfonelemj0 12805 ennnfonelemg 12807 gsumress 13260 issubmd 13339 mhmeql 13357 ghmeql 13636 cdivcncfap 15109 cnopnap 15116 ivthinc 15148 limcdifap 15167 limcimolemlt 15169 dvcoapbr 15212 dvdsppwf1o 15494 2lgslem1b 15599 2omap 15969 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |