| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabd | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2929. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elrabd.1 |
|
| elrabd.2 |
|
| elrabd.3 |
|
| Ref | Expression |
|---|---|
| elrabd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabd.2 |
. . 3
| |
| 2 | elrabd.3 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | elrabd.1 |
. . 3
| |
| 5 | 4 | elrab 2929 |
. 2
|
| 6 | 3, 5 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 |
| This theorem is referenced by: ctssdccl 7213 suplocexprlemru 7832 suplocexprlemloc 7834 zsupssdc 10381 uzwodc 12358 nninfctlemfo 12361 lcmcllem 12389 lcmledvds 12392 phisum 12563 odzcllem 12565 pcpremul 12616 znnen 12769 ennnfonelemj0 12772 ennnfonelemg 12774 gsumress 13227 issubmd 13306 mhmeql 13324 ghmeql 13603 cdivcncfap 15076 cnopnap 15083 ivthinc 15115 limcdifap 15134 limcimolemlt 15136 dvcoapbr 15179 dvdsppwf1o 15461 2lgslem1b 15566 2omap 15932 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |