![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrabd | Unicode version |
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2895. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elrabd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
elrabd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
elrabd.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elrabd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elrabd.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 306 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | elrabd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | elrab 2895 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2741 |
This theorem is referenced by: ctssdccl 7113 suplocexprlemru 7721 suplocexprlemloc 7723 zsupssdc 11958 uzwodc 12041 phisum 12243 odzcllem 12245 pcpremul 12296 znnen 12402 ennnfonelemj0 12405 ennnfonelemg 12407 issubmd 12872 mhmeql 12883 cdivcncfap 14248 cnopnap 14255 ivthinc 14282 limcdifap 14292 limcimolemlt 14294 dvcoapbr 14332 subctctexmid 14912 |
Copyright terms: Public domain | W3C validator |