ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabd Unicode version

Theorem elrabd 2938
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2936. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elrabd.1  |-  ( x  =  A  ->  ( ps 
<->  ch ) )
elrabd.2  |-  ( ph  ->  A  e.  B )
elrabd.3  |-  ( ph  ->  ch )
Assertion
Ref Expression
elrabd  |-  ( ph  ->  A  e.  { x  e.  B  |  ps } )
Distinct variable groups:    x, A    x, B    ch, x
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem elrabd
StepHypRef Expression
1 elrabd.2 . . 3  |-  ( ph  ->  A  e.  B )
2 elrabd.3 . . 3  |-  ( ph  ->  ch )
31, 2jca 306 . 2  |-  ( ph  ->  ( A  e.  B  /\  ch ) )
4 elrabd.1 . . 3  |-  ( x  =  A  ->  ( ps 
<->  ch ) )
54elrab 2936 . 2  |-  ( A  e.  { x  e.  B  |  ps }  <->  ( A  e.  B  /\  ch ) )
63, 5sylibr 134 1  |-  ( ph  ->  A  e.  { x  e.  B  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {crab 2490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778
This theorem is referenced by:  ctssdccl  7239  suplocexprlemru  7867  suplocexprlemloc  7869  zsupssdc  10418  uzwodc  12473  nninfctlemfo  12476  lcmcllem  12504  lcmledvds  12507  phisum  12678  odzcllem  12680  pcpremul  12731  znnen  12884  ennnfonelemj0  12887  ennnfonelemg  12889  gsumress  13342  issubmd  13421  mhmeql  13439  ghmeql  13718  cdivcncfap  15191  cnopnap  15198  ivthinc  15230  limcdifap  15249  limcimolemlt  15251  dvcoapbr  15294  dvdsppwf1o  15576  2lgslem1b  15681  incistruhgr  15801  upgr1elem1  15828  2omap  16132  subctctexmid  16139
  Copyright terms: Public domain W3C validator