ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabd GIF version

Theorem elrabd 2888
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2886. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elrabd.1 (𝑥 = 𝐴 → (𝜓𝜒))
elrabd.2 (𝜑𝐴𝐵)
elrabd.3 (𝜑𝜒)
Assertion
Ref Expression
elrabd (𝜑𝐴 ∈ {𝑥𝐵𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elrabd
StepHypRef Expression
1 elrabd.2 . . 3 (𝜑𝐴𝐵)
2 elrabd.3 . . 3 (𝜑𝜒)
31, 2jca 304 . 2 (𝜑 → (𝐴𝐵𝜒))
4 elrabd.1 . . 3 (𝑥 = 𝐴 → (𝜓𝜒))
54elrab 2886 . 2 (𝐴 ∈ {𝑥𝐵𝜓} ↔ (𝐴𝐵𝜒))
63, 5sylibr 133 1 (𝜑𝐴 ∈ {𝑥𝐵𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732
This theorem is referenced by:  ctssdccl  7088  suplocexprlemru  7681  suplocexprlemloc  7683  zsupssdc  11909  uzwodc  11992  phisum  12194  odzcllem  12196  pcpremul  12247  znnen  12353  ennnfonelemj0  12356  ennnfonelemg  12358  issubmd  12696  mhmeql  12707  cdivcncfap  13381  cnopnap  13388  ivthinc  13415  limcdifap  13425  limcimolemlt  13427  dvcoapbr  13465  subctctexmid  14034
  Copyright terms: Public domain W3C validator