ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabd GIF version

Theorem elrabd 2935
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2933. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elrabd.1 (𝑥 = 𝐴 → (𝜓𝜒))
elrabd.2 (𝜑𝐴𝐵)
elrabd.3 (𝜑𝜒)
Assertion
Ref Expression
elrabd (𝜑𝐴 ∈ {𝑥𝐵𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elrabd
StepHypRef Expression
1 elrabd.2 . . 3 (𝜑𝐴𝐵)
2 elrabd.3 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝐴𝐵𝜒))
4 elrabd.1 . . 3 (𝑥 = 𝐴 → (𝜓𝜒))
54elrab 2933 . 2 (𝐴 ∈ {𝑥𝐵𝜓} ↔ (𝐴𝐵𝜒))
63, 5sylibr 134 1 (𝜑𝐴 ∈ {𝑥𝐵𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {crab 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775
This theorem is referenced by:  ctssdccl  7228  suplocexprlemru  7852  suplocexprlemloc  7854  zsupssdc  10403  uzwodc  12433  nninfctlemfo  12436  lcmcllem  12464  lcmledvds  12467  phisum  12638  odzcllem  12640  pcpremul  12691  znnen  12844  ennnfonelemj0  12847  ennnfonelemg  12849  gsumress  13302  issubmd  13381  mhmeql  13399  ghmeql  13678  cdivcncfap  15151  cnopnap  15158  ivthinc  15190  limcdifap  15209  limcimolemlt  15211  dvcoapbr  15254  dvdsppwf1o  15536  2lgslem1b  15641  incistruhgr  15761  upgr1elem1  15788  2omap  16071  subctctexmid  16078
  Copyright terms: Public domain W3C validator