Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrabd | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2864. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elrabd.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
elrabd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
elrabd.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
elrabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | elrabd.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝜒)) |
4 | elrabd.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
5 | 4 | elrab 2864 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
6 | 3, 5 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1332 ∈ wcel 2125 {crab 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rab 2441 df-v 2711 |
This theorem is referenced by: ctssdccl 7041 suplocexprlemru 7618 suplocexprlemloc 7620 znnen 12078 ennnfonelemj0 12081 ennnfonelemg 12083 cdivcncfap 12926 cnopnap 12933 ivthinc 12960 limcdifap 12970 limcimolemlt 12972 dvcoapbr 13010 subctctexmid 13512 |
Copyright terms: Public domain | W3C validator |