Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrabd | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2886. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elrabd.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
elrabd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
elrabd.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
elrabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | elrabd.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝜒)) |
4 | elrabd.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
5 | 4 | elrab 2886 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
6 | 3, 5 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 |
This theorem is referenced by: ctssdccl 7088 suplocexprlemru 7681 suplocexprlemloc 7683 zsupssdc 11909 uzwodc 11992 phisum 12194 odzcllem 12196 pcpremul 12247 znnen 12353 ennnfonelemj0 12356 ennnfonelemg 12358 issubmd 12696 mhmeql 12707 cdivcncfap 13381 cnopnap 13388 ivthinc 13415 limcdifap 13425 limcimolemlt 13427 dvcoapbr 13465 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |