![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrabd | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2916. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elrabd.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
elrabd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
elrabd.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
elrabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | elrabd.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝜒)) |
4 | elrabd.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
5 | 4 | elrab 2916 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
6 | 3, 5 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {crab 2476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 |
This theorem is referenced by: ctssdccl 7170 suplocexprlemru 7779 suplocexprlemloc 7781 zsupssdc 12091 uzwodc 12174 nninfctlemfo 12177 lcmcllem 12205 lcmledvds 12208 phisum 12378 odzcllem 12380 pcpremul 12431 znnen 12555 ennnfonelemj0 12558 ennnfonelemg 12560 gsumress 12978 issubmd 13046 mhmeql 13064 ghmeql 13337 cdivcncfap 14758 cnopnap 14765 ivthinc 14797 limcdifap 14816 limcimolemlt 14818 dvcoapbr 14856 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |