| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elrabd | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2920. (Contributed by Glauco Siliprandi, 23-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| elrabd.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | 
| elrabd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| elrabd.3 | ⊢ (𝜑 → 𝜒) | 
| Ref | Expression | 
|---|---|
| elrabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrabd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | elrabd.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝜒)) | 
| 4 | elrabd.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | elrab 2920 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) | 
| 6 | 3, 5 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {crab 2479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 | 
| This theorem is referenced by: ctssdccl 7177 suplocexprlemru 7786 suplocexprlemloc 7788 zsupssdc 10328 uzwodc 12204 nninfctlemfo 12207 lcmcllem 12235 lcmledvds 12238 phisum 12409 odzcllem 12411 pcpremul 12462 znnen 12615 ennnfonelemj0 12618 ennnfonelemg 12620 gsumress 13038 issubmd 13106 mhmeql 13124 ghmeql 13397 cdivcncfap 14840 cnopnap 14847 ivthinc 14879 limcdifap 14898 limcimolemlt 14900 dvcoapbr 14943 dvdsppwf1o 15225 2lgslem1b 15330 subctctexmid 15645 | 
| Copyright terms: Public domain | W3C validator |