ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabd GIF version

Theorem elrabd 2883
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2881. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elrabd.1 (𝑥 = 𝐴 → (𝜓𝜒))
elrabd.2 (𝜑𝐴𝐵)
elrabd.3 (𝜑𝜒)
Assertion
Ref Expression
elrabd (𝜑𝐴 ∈ {𝑥𝐵𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elrabd
StepHypRef Expression
1 elrabd.2 . . 3 (𝜑𝐴𝐵)
2 elrabd.3 . . 3 (𝜑𝜒)
31, 2jca 304 . 2 (𝜑 → (𝐴𝐵𝜒))
4 elrabd.1 . . 3 (𝑥 = 𝐴 → (𝜓𝜒))
54elrab 2881 . 2 (𝐴 ∈ {𝑥𝐵𝜓} ↔ (𝐴𝐵𝜒))
63, 5sylibr 133 1 (𝜑𝐴 ∈ {𝑥𝐵𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {crab 2447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rab 2452  df-v 2727
This theorem is referenced by:  ctssdccl  7072  suplocexprlemru  7656  suplocexprlemloc  7658  zsupssdc  11883  uzwodc  11966  phisum  12168  odzcllem  12170  pcpremul  12221  znnen  12327  ennnfonelemj0  12330  ennnfonelemg  12332  cdivcncfap  13187  cnopnap  13194  ivthinc  13221  limcdifap  13231  limcimolemlt  13233  dvcoapbr  13271  subctctexmid  13841
  Copyright terms: Public domain W3C validator