| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabd | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2920. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elrabd.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| elrabd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| elrabd.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| elrabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | elrabd.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| 4 | elrabd.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | elrab 2920 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| 6 | 3, 5 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 |
| This theorem is referenced by: ctssdccl 7186 suplocexprlemru 7803 suplocexprlemloc 7805 zsupssdc 10345 uzwodc 12229 nninfctlemfo 12232 lcmcllem 12260 lcmledvds 12263 phisum 12434 odzcllem 12436 pcpremul 12487 znnen 12640 ennnfonelemj0 12643 ennnfonelemg 12645 gsumress 13097 issubmd 13176 mhmeql 13194 ghmeql 13473 cdivcncfap 14924 cnopnap 14931 ivthinc 14963 limcdifap 14982 limcimolemlt 14984 dvcoapbr 15027 dvdsppwf1o 15309 2lgslem1b 15414 2omap 15726 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |