ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabd GIF version

Theorem elrabd 2922
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2920. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elrabd.1 (𝑥 = 𝐴 → (𝜓𝜒))
elrabd.2 (𝜑𝐴𝐵)
elrabd.3 (𝜑𝜒)
Assertion
Ref Expression
elrabd (𝜑𝐴 ∈ {𝑥𝐵𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elrabd
StepHypRef Expression
1 elrabd.2 . . 3 (𝜑𝐴𝐵)
2 elrabd.3 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝐴𝐵𝜒))
4 elrabd.1 . . 3 (𝑥 = 𝐴 → (𝜓𝜒))
54elrab 2920 . 2 (𝐴 ∈ {𝑥𝐵𝜓} ↔ (𝐴𝐵𝜒))
63, 5sylibr 134 1 (𝜑𝐴 ∈ {𝑥𝐵𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765
This theorem is referenced by:  ctssdccl  7186  suplocexprlemru  7805  suplocexprlemloc  7807  zsupssdc  10347  uzwodc  12231  nninfctlemfo  12234  lcmcllem  12262  lcmledvds  12265  phisum  12436  odzcllem  12438  pcpremul  12489  znnen  12642  ennnfonelemj0  12645  ennnfonelemg  12647  gsumress  13099  issubmd  13178  mhmeql  13196  ghmeql  13475  cdivcncfap  14948  cnopnap  14955  ivthinc  14987  limcdifap  15006  limcimolemlt  15008  dvcoapbr  15051  dvdsppwf1o  15333  2lgslem1b  15438  2omap  15750  subctctexmid  15755
  Copyright terms: Public domain W3C validator