| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabd | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2959. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elrabd.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| elrabd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| elrabd.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| elrabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | elrabd.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| 4 | elrabd.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | elrab 2959 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| 6 | 3, 5 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 |
| This theorem is referenced by: ctssdccl 7274 suplocexprlemru 7902 suplocexprlemloc 7904 zsupssdc 10453 uzwodc 12553 nninfctlemfo 12556 lcmcllem 12584 lcmledvds 12587 phisum 12758 odzcllem 12760 pcpremul 12811 znnen 12964 ennnfonelemj0 12967 ennnfonelemg 12969 gsumress 13423 issubmd 13502 mhmeql 13520 ghmeql 13799 cdivcncfap 15272 cnopnap 15279 ivthinc 15311 limcdifap 15330 limcimolemlt 15332 dvcoapbr 15375 dvdsppwf1o 15657 2lgslem1b 15762 incistruhgr 15884 upgr1elem1 15914 2omap 16318 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |