| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabd | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2933. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elrabd.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| elrabd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| elrabd.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| elrabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | elrabd.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| 4 | elrabd.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | elrab 2933 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| 6 | 3, 5 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {crab 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 |
| This theorem is referenced by: ctssdccl 7228 suplocexprlemru 7852 suplocexprlemloc 7854 zsupssdc 10403 uzwodc 12433 nninfctlemfo 12436 lcmcllem 12464 lcmledvds 12467 phisum 12638 odzcllem 12640 pcpremul 12691 znnen 12844 ennnfonelemj0 12847 ennnfonelemg 12849 gsumress 13302 issubmd 13381 mhmeql 13399 ghmeql 13678 cdivcncfap 15151 cnopnap 15158 ivthinc 15190 limcdifap 15209 limcimolemlt 15211 dvcoapbr 15254 dvdsppwf1o 15536 2lgslem1b 15641 incistruhgr 15761 upgr1elem1 15788 2omap 16071 subctctexmid 16078 |
| Copyright terms: Public domain | W3C validator |