ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnopnap Unicode version

Theorem cnopnap 12763
Description: The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnopnap  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o.  -  )
) )
Distinct variable group:    w, A

Proof of Theorem cnopnap
Dummy variables  r  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3182 . . 3  |-  { w  e.  CC  |  w #  A }  C_  CC
21a1i 9 . 2  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  C_  CC )
3 breq1 3932 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w #  A  <->  x #  A
) )
43elrab 2840 . . . . . . . . 9  |-  ( x  e.  { w  e.  CC  |  w #  A } 
<->  ( x  e.  CC  /\  x #  A ) )
54biimpi 119 . . . . . . . 8  |-  ( x  e.  { w  e.  CC  |  w #  A }  ->  ( x  e.  CC  /\  x #  A
) )
65adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x  e.  CC  /\  x #  A ) )
76simpld 111 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  x  e.  CC )
8 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  A  e.  CC )
97, 8subcld 8073 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x  -  A )  e.  CC )
106simprd 113 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  x #  A )
117, 8, 10subap0d 8406 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x  -  A ) #  0 )
129, 11absrpclapd 10960 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  ( abs `  ( x  -  A ) )  e.  RR+ )
13 breq1 3932 . . . . . . 7  |-  ( w  =  z  ->  (
w #  A  <->  z #  A
) )
14 cnxmet 12700 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
159abscld 10953 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  ( abs `  ( x  -  A ) )  e.  RR )
1615rexrd 7815 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  ( abs `  ( x  -  A ) )  e. 
RR* )
17 elbl 12560 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  CC  /\  ( abs `  ( x  -  A ) )  e. 
RR* )  ->  (
z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  <->  ( z  e.  CC  /\  ( x ( abs  o.  -  ) z )  < 
( abs `  (
x  -  A ) ) ) ) )
1814, 7, 16, 17mp3an2i 1320 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  <->  ( z  e.  CC  /\  ( x ( abs  o.  -  ) z )  < 
( abs `  (
x  -  A ) ) ) ) )
1918biimpa 294 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( z  e.  CC  /\  ( x ( abs  o.  -  ) z )  < 
( abs `  (
x  -  A ) ) ) )
2019simpld 111 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  z  e.  CC )
218adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  A  e.  CC )
2220, 21subcld 8073 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( z  -  A )  e.  CC )
2322abscld 10953 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
z  -  A ) )  e.  RR )
247adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  x  e.  CC )
2524, 20subcld 8073 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( x  -  z )  e.  CC )
2625abscld 10953 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  z ) )  e.  RR )
2715adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  A ) )  e.  RR )
2826, 23readdcld 7795 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( ( abs `  ( x  -  z
) )  +  ( abs `  ( z  -  A ) ) )  e.  RR )
29 eqid 2139 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3029cnmetdval 12698 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x ( abs 
o.  -  ) z
)  =  ( abs `  ( x  -  z
) ) )
3124, 20, 30syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( x ( abs  o.  -  )
z )  =  ( abs `  ( x  -  z ) ) )
3219simprd 113 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( x ( abs  o.  -  )
z )  <  ( abs `  ( x  -  A ) ) )
3331, 32eqbrtrrd 3952 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  z ) )  <  ( abs `  ( x  -  A
) ) )
3424, 21, 20abs3difd 10972 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  A ) )  <_  ( ( abs `  ( x  -  z ) )  +  ( abs `  (
z  -  A ) ) ) )
3526, 27, 28, 33, 34ltletrd 8185 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  z ) )  <  ( ( abs `  ( x  -  z ) )  +  ( abs `  (
z  -  A ) ) ) )
3623, 26ltaddposd 8291 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( 0  < 
( abs `  (
z  -  A ) )  <->  ( abs `  (
x  -  z ) )  <  ( ( abs `  ( x  -  z ) )  +  ( abs `  (
z  -  A ) ) ) ) )
3735, 36mpbird 166 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  0  <  ( abs `  ( z  -  A ) ) )
3823, 37gt0ap0d 8391 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
z  -  A ) ) #  0 )
39 abs00ap 10834 . . . . . . . . . 10  |-  ( ( z  -  A )  e.  CC  ->  (
( abs `  (
z  -  A ) ) #  0  <->  ( z  -  A ) #  0 ) )
4022, 39syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( ( abs `  ( z  -  A
) ) #  0  <->  (
z  -  A ) #  0 ) )
4138, 40mpbid 146 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( z  -  A ) #  0 )
42 subap0 8405 . . . . . . . . 9  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( ( z  -  A ) #  0  <->  z #  A
) )
4320, 21, 42syl2anc 408 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( ( z  -  A ) #  0  <-> 
z #  A ) )
4441, 43mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  z #  A )
4513, 20, 44elrabd 2842 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  z  e.  {
w  e.  CC  |  w #  A } )
4645ex 114 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  ->  z  e.  { w  e.  CC  |  w #  A }
) )
4746ssrdv 3103 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  C_  { w  e.  CC  |  w #  A } )
48 oveq2 5782 . . . . . 6  |-  ( r  =  ( abs `  (
x  -  A ) )  ->  ( x
( ball `  ( abs  o. 
-  ) ) r )  =  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) ) )
4948sseq1d 3126 . . . . 5  |-  ( r  =  ( abs `  (
x  -  A ) )  ->  ( (
x ( ball `  ( abs  o.  -  ) ) r )  C_  { w  e.  CC  |  w #  A } 
<->  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) )  C_  { w  e.  CC  |  w #  A } ) )
5049rspcev 2789 . . . 4  |-  ( ( ( abs `  (
x  -  A ) )  e.  RR+  /\  (
x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  C_  { w  e.  CC  |  w #  A } )  ->  E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } )
5112, 47, 50syl2anc 408 . . 3  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } )
5251ralrimiva 2505 . 2  |-  ( A  e.  CC  ->  A. x  e.  { w  e.  CC  |  w #  A } E. r  e.  RR+  (
x ( ball `  ( abs  o.  -  ) ) r )  C_  { w  e.  CC  |  w #  A } )
53 eqid 2139 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
5453elmopn2 12618 . . 3  |-  ( ( abs  o.  -  )  e.  ( *Met `  CC )  ->  ( { w  e.  CC  |  w #  A }  e.  (
MetOpen `  ( abs  o.  -  ) )  <->  ( {
w  e.  CC  |  w #  A }  C_  CC  /\ 
A. x  e.  {
w  e.  CC  |  w #  A } E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } ) ) )
5514, 54ax-mp 5 . 2  |-  ( { w  e.  CC  |  w #  A }  e.  (
MetOpen `  ( abs  o.  -  ) )  <->  ( {
w  e.  CC  |  w #  A }  C_  CC  /\ 
A. x  e.  {
w  e.  CC  |  w #  A } E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } ) )
562, 52, 55sylanbrc 413 1  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o.  -  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420    C_ wss 3071   class class class wbr 3929    o. ccom 4543   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620    + caddc 7623   RR*cxr 7799    < clt 7800    - cmin 7933   # cap 8343   RR+crp 9441   abscabs 10769   *Metcxmet 12149   ballcbl 12151   MetOpencmopn 12154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-bases 12210
This theorem is referenced by:  dvrecap  12846
  Copyright terms: Public domain W3C validator