ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnopnap Unicode version

Theorem cnopnap 13192
Description: The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnopnap  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o.  -  )
) )
Distinct variable group:    w, A

Proof of Theorem cnopnap
Dummy variables  r  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3225 . . 3  |-  { w  e.  CC  |  w #  A }  C_  CC
21a1i 9 . 2  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  C_  CC )
3 breq1 3982 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w #  A  <->  x #  A
) )
43elrab 2880 . . . . . . . . 9  |-  ( x  e.  { w  e.  CC  |  w #  A } 
<->  ( x  e.  CC  /\  x #  A ) )
54biimpi 119 . . . . . . . 8  |-  ( x  e.  { w  e.  CC  |  w #  A }  ->  ( x  e.  CC  /\  x #  A
) )
65adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x  e.  CC  /\  x #  A ) )
76simpld 111 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  x  e.  CC )
8 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  A  e.  CC )
97, 8subcld 8203 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x  -  A )  e.  CC )
106simprd 113 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  x #  A )
117, 8, 10subap0d 8536 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x  -  A ) #  0 )
129, 11absrpclapd 11124 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  ( abs `  ( x  -  A ) )  e.  RR+ )
13 breq1 3982 . . . . . . 7  |-  ( w  =  z  ->  (
w #  A  <->  z #  A
) )
14 cnxmet 13129 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
159abscld 11117 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  ( abs `  ( x  -  A ) )  e.  RR )
1615rexrd 7942 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  ( abs `  ( x  -  A ) )  e. 
RR* )
17 elbl 12989 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  CC  /\  ( abs `  ( x  -  A ) )  e. 
RR* )  ->  (
z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  <->  ( z  e.  CC  /\  ( x ( abs  o.  -  ) z )  < 
( abs `  (
x  -  A ) ) ) ) )
1814, 7, 16, 17mp3an2i 1331 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  <->  ( z  e.  CC  /\  ( x ( abs  o.  -  ) z )  < 
( abs `  (
x  -  A ) ) ) ) )
1918biimpa 294 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( z  e.  CC  /\  ( x ( abs  o.  -  ) z )  < 
( abs `  (
x  -  A ) ) ) )
2019simpld 111 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  z  e.  CC )
218adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  A  e.  CC )
2220, 21subcld 8203 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( z  -  A )  e.  CC )
2322abscld 11117 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
z  -  A ) )  e.  RR )
247adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  x  e.  CC )
2524, 20subcld 8203 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( x  -  z )  e.  CC )
2625abscld 11117 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  z ) )  e.  RR )
2715adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  A ) )  e.  RR )
2826, 23readdcld 7922 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( ( abs `  ( x  -  z
) )  +  ( abs `  ( z  -  A ) ) )  e.  RR )
29 eqid 2164 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3029cnmetdval 13127 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x ( abs 
o.  -  ) z
)  =  ( abs `  ( x  -  z
) ) )
3124, 20, 30syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( x ( abs  o.  -  )
z )  =  ( abs `  ( x  -  z ) ) )
3219simprd 113 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( x ( abs  o.  -  )
z )  <  ( abs `  ( x  -  A ) ) )
3331, 32eqbrtrrd 4003 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  z ) )  <  ( abs `  ( x  -  A
) ) )
3424, 21, 20abs3difd 11136 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  A ) )  <_  ( ( abs `  ( x  -  z ) )  +  ( abs `  (
z  -  A ) ) ) )
3526, 27, 28, 33, 34ltletrd 8315 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  z ) )  <  ( ( abs `  ( x  -  z ) )  +  ( abs `  (
z  -  A ) ) ) )
3623, 26ltaddposd 8421 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( 0  < 
( abs `  (
z  -  A ) )  <->  ( abs `  (
x  -  z ) )  <  ( ( abs `  ( x  -  z ) )  +  ( abs `  (
z  -  A ) ) ) ) )
3735, 36mpbird 166 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  0  <  ( abs `  ( z  -  A ) ) )
3823, 37gt0ap0d 8521 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
z  -  A ) ) #  0 )
39 abs00ap 10998 . . . . . . . . . 10  |-  ( ( z  -  A )  e.  CC  ->  (
( abs `  (
z  -  A ) ) #  0  <->  ( z  -  A ) #  0 ) )
4022, 39syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( ( abs `  ( z  -  A
) ) #  0  <->  (
z  -  A ) #  0 ) )
4138, 40mpbid 146 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( z  -  A ) #  0 )
42 subap0 8535 . . . . . . . . 9  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( ( z  -  A ) #  0  <->  z #  A
) )
4320, 21, 42syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( ( z  -  A ) #  0  <-> 
z #  A ) )
4441, 43mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  z #  A )
4513, 20, 44elrabd 2882 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  z  e.  {
w  e.  CC  |  w #  A } )
4645ex 114 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  ->  z  e.  { w  e.  CC  |  w #  A }
) )
4746ssrdv 3146 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  C_  { w  e.  CC  |  w #  A } )
48 oveq2 5847 . . . . . 6  |-  ( r  =  ( abs `  (
x  -  A ) )  ->  ( x
( ball `  ( abs  o. 
-  ) ) r )  =  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) ) )
4948sseq1d 3169 . . . . 5  |-  ( r  =  ( abs `  (
x  -  A ) )  ->  ( (
x ( ball `  ( abs  o.  -  ) ) r )  C_  { w  e.  CC  |  w #  A } 
<->  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) )  C_  { w  e.  CC  |  w #  A } ) )
5049rspcev 2828 . . . 4  |-  ( ( ( abs `  (
x  -  A ) )  e.  RR+  /\  (
x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  C_  { w  e.  CC  |  w #  A } )  ->  E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } )
5112, 47, 50syl2anc 409 . . 3  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } )
5251ralrimiva 2537 . 2  |-  ( A  e.  CC  ->  A. x  e.  { w  e.  CC  |  w #  A } E. r  e.  RR+  (
x ( ball `  ( abs  o.  -  ) ) r )  C_  { w  e.  CC  |  w #  A } )
53 eqid 2164 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
5453elmopn2 13047 . . 3  |-  ( ( abs  o.  -  )  e.  ( *Met `  CC )  ->  ( { w  e.  CC  |  w #  A }  e.  (
MetOpen `  ( abs  o.  -  ) )  <->  ( {
w  e.  CC  |  w #  A }  C_  CC  /\ 
A. x  e.  {
w  e.  CC  |  w #  A } E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } ) ) )
5514, 54ax-mp 5 . 2  |-  ( { w  e.  CC  |  w #  A }  e.  (
MetOpen `  ( abs  o.  -  ) )  <->  ( {
w  e.  CC  |  w #  A }  C_  CC  /\ 
A. x  e.  {
w  e.  CC  |  w #  A } E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } ) )
562, 52, 55sylanbrc 414 1  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o.  -  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   {crab 2446    C_ wss 3114   class class class wbr 3979    o. ccom 4605   ` cfv 5185  (class class class)co 5839   CCcc 7745   RRcr 7746   0cc0 7747    + caddc 7750   RR*cxr 7926    < clt 7927    - cmin 8063   # cap 8473   RR+crp 9583   abscabs 10933   *Metcxmet 12578   ballcbl 12580   MetOpencmopn 12583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-iinf 4562  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-mulrcl 7846  ax-addcom 7847  ax-mulcom 7848  ax-addass 7849  ax-mulass 7850  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-1rid 7854  ax-0id 7855  ax-rnegex 7856  ax-precex 7857  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-apti 7862  ax-pre-ltadd 7863  ax-pre-mulgt0 7864  ax-pre-mulext 7865  ax-arch 7866  ax-caucvg 7867
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-if 3519  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-id 4268  df-po 4271  df-iso 4272  df-iord 4341  df-on 4343  df-ilim 4344  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-isom 5194  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-1st 6103  df-2nd 6104  df-recs 6267  df-frec 6353  df-map 6610  df-sup 6943  df-inf 6944  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-reap 8467  df-ap 8474  df-div 8563  df-inn 8852  df-2 8910  df-3 8911  df-4 8912  df-n0 9109  df-z 9186  df-uz 9461  df-q 9552  df-rp 9584  df-xneg 9702  df-xadd 9703  df-seqfrec 10375  df-exp 10449  df-cj 10778  df-re 10779  df-im 10780  df-rsqrt 10934  df-abs 10935  df-topgen 12570  df-psmet 12585  df-xmet 12586  df-met 12587  df-bl 12588  df-mopn 12589  df-top 12594  df-bases 12639
This theorem is referenced by:  dvrecap  13275
  Copyright terms: Public domain W3C validator