ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnopnap Unicode version

Theorem cnopnap 13234
Description: The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnopnap  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o.  -  )
) )
Distinct variable group:    w, A

Proof of Theorem cnopnap
Dummy variables  r  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3227 . . 3  |-  { w  e.  CC  |  w #  A }  C_  CC
21a1i 9 . 2  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  C_  CC )
3 breq1 3985 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w #  A  <->  x #  A
) )
43elrab 2882 . . . . . . . . 9  |-  ( x  e.  { w  e.  CC  |  w #  A } 
<->  ( x  e.  CC  /\  x #  A ) )
54biimpi 119 . . . . . . . 8  |-  ( x  e.  { w  e.  CC  |  w #  A }  ->  ( x  e.  CC  /\  x #  A
) )
65adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x  e.  CC  /\  x #  A ) )
76simpld 111 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  x  e.  CC )
8 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  A  e.  CC )
97, 8subcld 8209 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x  -  A )  e.  CC )
106simprd 113 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  x #  A )
117, 8, 10subap0d 8542 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x  -  A ) #  0 )
129, 11absrpclapd 11130 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  ( abs `  ( x  -  A ) )  e.  RR+ )
13 breq1 3985 . . . . . . 7  |-  ( w  =  z  ->  (
w #  A  <->  z #  A
) )
14 cnxmet 13171 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
159abscld 11123 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  ( abs `  ( x  -  A ) )  e.  RR )
1615rexrd 7948 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  ( abs `  ( x  -  A ) )  e. 
RR* )
17 elbl 13031 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  CC  /\  ( abs `  ( x  -  A ) )  e. 
RR* )  ->  (
z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  <->  ( z  e.  CC  /\  ( x ( abs  o.  -  ) z )  < 
( abs `  (
x  -  A ) ) ) ) )
1814, 7, 16, 17mp3an2i 1332 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  <->  ( z  e.  CC  /\  ( x ( abs  o.  -  ) z )  < 
( abs `  (
x  -  A ) ) ) ) )
1918biimpa 294 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( z  e.  CC  /\  ( x ( abs  o.  -  ) z )  < 
( abs `  (
x  -  A ) ) ) )
2019simpld 111 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  z  e.  CC )
218adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  A  e.  CC )
2220, 21subcld 8209 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( z  -  A )  e.  CC )
2322abscld 11123 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
z  -  A ) )  e.  RR )
247adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  x  e.  CC )
2524, 20subcld 8209 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( x  -  z )  e.  CC )
2625abscld 11123 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  z ) )  e.  RR )
2715adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  A ) )  e.  RR )
2826, 23readdcld 7928 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( ( abs `  ( x  -  z
) )  +  ( abs `  ( z  -  A ) ) )  e.  RR )
29 eqid 2165 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3029cnmetdval 13169 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x ( abs 
o.  -  ) z
)  =  ( abs `  ( x  -  z
) ) )
3124, 20, 30syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( x ( abs  o.  -  )
z )  =  ( abs `  ( x  -  z ) ) )
3219simprd 113 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( x ( abs  o.  -  )
z )  <  ( abs `  ( x  -  A ) ) )
3331, 32eqbrtrrd 4006 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  z ) )  <  ( abs `  ( x  -  A
) ) )
3424, 21, 20abs3difd 11142 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  A ) )  <_  ( ( abs `  ( x  -  z ) )  +  ( abs `  (
z  -  A ) ) ) )
3526, 27, 28, 33, 34ltletrd 8321 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
x  -  z ) )  <  ( ( abs `  ( x  -  z ) )  +  ( abs `  (
z  -  A ) ) ) )
3623, 26ltaddposd 8427 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( 0  < 
( abs `  (
z  -  A ) )  <->  ( abs `  (
x  -  z ) )  <  ( ( abs `  ( x  -  z ) )  +  ( abs `  (
z  -  A ) ) ) ) )
3735, 36mpbird 166 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  0  <  ( abs `  ( z  -  A ) ) )
3823, 37gt0ap0d 8527 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( abs `  (
z  -  A ) ) #  0 )
39 abs00ap 11004 . . . . . . . . . 10  |-  ( ( z  -  A )  e.  CC  ->  (
( abs `  (
z  -  A ) ) #  0  <->  ( z  -  A ) #  0 ) )
4022, 39syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( ( abs `  ( z  -  A
) ) #  0  <->  (
z  -  A ) #  0 ) )
4138, 40mpbid 146 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( z  -  A ) #  0 )
42 subap0 8541 . . . . . . . . 9  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( ( z  -  A ) #  0  <->  z #  A
) )
4320, 21, 42syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  ( ( z  -  A ) #  0  <-> 
z #  A ) )
4441, 43mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  z #  A )
4513, 20, 44elrabd 2884 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  /\  z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) ) )  ->  z  e.  {
w  e.  CC  |  w #  A } )
4645ex 114 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
z  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  ->  z  e.  { w  e.  CC  |  w #  A }
) )
4746ssrdv 3148 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  (
x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  C_  { w  e.  CC  |  w #  A } )
48 oveq2 5850 . . . . . 6  |-  ( r  =  ( abs `  (
x  -  A ) )  ->  ( x
( ball `  ( abs  o. 
-  ) ) r )  =  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) ) )
4948sseq1d 3171 . . . . 5  |-  ( r  =  ( abs `  (
x  -  A ) )  ->  ( (
x ( ball `  ( abs  o.  -  ) ) r )  C_  { w  e.  CC  |  w #  A } 
<->  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  ( x  -  A
) ) )  C_  { w  e.  CC  |  w #  A } ) )
5049rspcev 2830 . . . 4  |-  ( ( ( abs `  (
x  -  A ) )  e.  RR+  /\  (
x ( ball `  ( abs  o.  -  ) ) ( abs `  (
x  -  A ) ) )  C_  { w  e.  CC  |  w #  A } )  ->  E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } )
5112, 47, 50syl2anc 409 . . 3  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  A } )  ->  E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } )
5251ralrimiva 2539 . 2  |-  ( A  e.  CC  ->  A. x  e.  { w  e.  CC  |  w #  A } E. r  e.  RR+  (
x ( ball `  ( abs  o.  -  ) ) r )  C_  { w  e.  CC  |  w #  A } )
53 eqid 2165 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
5453elmopn2 13089 . . 3  |-  ( ( abs  o.  -  )  e.  ( *Met `  CC )  ->  ( { w  e.  CC  |  w #  A }  e.  (
MetOpen `  ( abs  o.  -  ) )  <->  ( {
w  e.  CC  |  w #  A }  C_  CC  /\ 
A. x  e.  {
w  e.  CC  |  w #  A } E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } ) ) )
5514, 54ax-mp 5 . 2  |-  ( { w  e.  CC  |  w #  A }  e.  (
MetOpen `  ( abs  o.  -  ) )  <->  ( {
w  e.  CC  |  w #  A }  C_  CC  /\ 
A. x  e.  {
w  e.  CC  |  w #  A } E. r  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) r )  C_  { w  e.  CC  |  w #  A } ) )
562, 52, 55sylanbrc 414 1  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o.  -  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   class class class wbr 3982    o. ccom 4608   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753    + caddc 7756   RR*cxr 7932    < clt 7933    - cmin 8069   # cap 8479   RR+crp 9589   abscabs 10939   *Metcxmet 12620   ballcbl 12622   MetOpencmopn 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-bases 12681
This theorem is referenced by:  dvrecap  13317
  Copyright terms: Public domain W3C validator