ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubmd Unicode version

Theorem issubmd 13049
Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
issubmd.b  |-  B  =  ( Base `  M
)
issubmd.p  |-  .+  =  ( +g  `  M )
issubmd.z  |-  .0.  =  ( 0g `  M )
issubmd.m  |-  ( ph  ->  M  e.  Mnd )
issubmd.cz  |-  ( ph  ->  ch )
issubmd.cp  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )  ->  et )
issubmd.ch  |-  ( z  =  .0.  ->  ( ps 
<->  ch ) )
issubmd.th  |-  ( z  =  x  ->  ( ps 
<->  th ) )
issubmd.ta  |-  ( z  =  y  ->  ( ps 
<->  ta ) )
issubmd.et  |-  ( z  =  ( x  .+  y )  ->  ( ps 
<->  et ) )
Assertion
Ref Expression
issubmd  |-  ( ph  ->  { z  e.  B  |  ps }  e.  (SubMnd `  M ) )
Distinct variable groups:    x, y, z, B    x, M, y    ph, x, y    ps, x, y    z,  .+    z,  .0.    ch, z    et, z    ta, z    th, z
Allowed substitution hints:    ph( z)    ps( z)    ch( x, y)    th( x, y)    ta( x, y)    et( x, y)    .+ ( x, y)    M( z)    .0. ( x, y)

Proof of Theorem issubmd
StepHypRef Expression
1 ssrab2 3265 . . 3  |-  { z  e.  B  |  ps }  C_  B
21a1i 9 . 2  |-  ( ph  ->  { z  e.  B  |  ps }  C_  B
)
3 issubmd.ch . . 3  |-  ( z  =  .0.  ->  ( ps 
<->  ch ) )
4 issubmd.m . . . 4  |-  ( ph  ->  M  e.  Mnd )
5 issubmd.b . . . . 5  |-  B  =  ( Base `  M
)
6 issubmd.z . . . . 5  |-  .0.  =  ( 0g `  M )
75, 6mndidcl 13014 . . . 4  |-  ( M  e.  Mnd  ->  .0.  e.  B )
84, 7syl 14 . . 3  |-  ( ph  ->  .0.  e.  B )
9 issubmd.cz . . 3  |-  ( ph  ->  ch )
103, 8, 9elrabd 2919 . 2  |-  ( ph  ->  .0.  e.  { z  e.  B  |  ps } )
11 issubmd.th . . . . . 6  |-  ( z  =  x  ->  ( ps 
<->  th ) )
1211elrab 2917 . . . . 5  |-  ( x  e.  { z  e.  B  |  ps }  <->  ( x  e.  B  /\  th ) )
13 issubmd.ta . . . . . 6  |-  ( z  =  y  ->  ( ps 
<->  ta ) )
1413elrab 2917 . . . . 5  |-  ( y  e.  { z  e.  B  |  ps }  <->  ( y  e.  B  /\  ta ) )
1512, 14anbi12i 460 . . . 4  |-  ( ( x  e.  { z  e.  B  |  ps }  /\  y  e.  {
z  e.  B  |  ps } )  <->  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )
16 issubmd.et . . . . 5  |-  ( z  =  ( x  .+  y )  ->  ( ps 
<->  et ) )
174adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  ->  M  e.  Mnd )
18 simprll 537 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  ->  x  e.  B )
19 simprrl 539 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  -> 
y  e.  B )
20 issubmd.p . . . . . . 7  |-  .+  =  ( +g  `  M )
215, 20mndcl 13007 . . . . . 6  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
2217, 18, 19, 21syl3anc 1249 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  -> 
( x  .+  y
)  e.  B )
23 an4 586 . . . . . 6  |-  ( ( ( x  e.  B  /\  th )  /\  (
y  e.  B  /\  ta ) )  <->  ( (
x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )
24 issubmd.cp . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )  ->  et )
2523, 24sylan2b 287 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  ->  et )
2616, 22, 25elrabd 2919 . . . 4  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  -> 
( x  .+  y
)  e.  { z  e.  B  |  ps } )
2715, 26sylan2b 287 . . 3  |-  ( (
ph  /\  ( x  e.  { z  e.  B  |  ps }  /\  y  e.  { z  e.  B  |  ps } ) )  ->  ( x  .+  y )  e.  {
z  e.  B  |  ps } )
2827ralrimivva 2576 . 2  |-  ( ph  ->  A. x  e.  {
z  e.  B  |  ps } A. y  e. 
{ z  e.  B  |  ps }  ( x 
.+  y )  e. 
{ z  e.  B  |  ps } )
295, 6, 20issubm 13047 . . 3  |-  ( M  e.  Mnd  ->  ( { z  e.  B  |  ps }  e.  (SubMnd `  M )  <->  ( {
z  e.  B  |  ps }  C_  B  /\  .0.  e.  { z  e.  B  |  ps }  /\  A. x  e.  {
z  e.  B  |  ps } A. y  e. 
{ z  e.  B  |  ps }  ( x 
.+  y )  e. 
{ z  e.  B  |  ps } ) ) )
304, 29syl 14 . 2  |-  ( ph  ->  ( { z  e.  B  |  ps }  e.  (SubMnd `  M )  <->  ( { z  e.  B  |  ps }  C_  B  /\  .0.  e.  { z  e.  B  |  ps }  /\  A. x  e. 
{ z  e.  B  |  ps } A. y  e.  { z  e.  B  |  ps }  ( x 
.+  y )  e. 
{ z  e.  B  |  ps } ) ) )
312, 10, 28, 30mpbir3and 1182 1  |-  ( ph  ->  { z  e.  B  |  ps }  e.  (SubMnd `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476    C_ wss 3154   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Mndcmnd 13000  SubMndcsubmnd 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-submnd 13035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator