| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubmd | Unicode version | ||
| Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| issubmd.b |
|
| issubmd.p |
|
| issubmd.z |
|
| issubmd.m |
|
| issubmd.cz |
|
| issubmd.cp |
|
| issubmd.ch |
|
| issubmd.th |
|
| issubmd.ta |
|
| issubmd.et |
|
| Ref | Expression |
|---|---|
| issubmd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | issubmd.ch |
. . 3
| |
| 4 | issubmd.m |
. . . 4
| |
| 5 | issubmd.b |
. . . . 5
| |
| 6 | issubmd.z |
. . . . 5
| |
| 7 | 5, 6 | mndidcl 13458 |
. . . 4
|
| 8 | 4, 7 | syl 14 |
. . 3
|
| 9 | issubmd.cz |
. . 3
| |
| 10 | 3, 8, 9 | elrabd 2961 |
. 2
|
| 11 | issubmd.th |
. . . . . 6
| |
| 12 | 11 | elrab 2959 |
. . . . 5
|
| 13 | issubmd.ta |
. . . . . 6
| |
| 14 | 13 | elrab 2959 |
. . . . 5
|
| 15 | 12, 14 | anbi12i 460 |
. . . 4
|
| 16 | issubmd.et |
. . . . 5
| |
| 17 | 4 | adantr 276 |
. . . . . 6
|
| 18 | simprll 537 |
. . . . . 6
| |
| 19 | simprrl 539 |
. . . . . 6
| |
| 20 | issubmd.p |
. . . . . . 7
| |
| 21 | 5, 20 | mndcl 13451 |
. . . . . 6
|
| 22 | 17, 18, 19, 21 | syl3anc 1271 |
. . . . 5
|
| 23 | an4 586 |
. . . . . 6
| |
| 24 | issubmd.cp |
. . . . . 6
| |
| 25 | 23, 24 | sylan2b 287 |
. . . . 5
|
| 26 | 16, 22, 25 | elrabd 2961 |
. . . 4
|
| 27 | 15, 26 | sylan2b 287 |
. . 3
|
| 28 | 27 | ralrimivva 2612 |
. 2
|
| 29 | 5, 6, 20 | issubm 13500 |
. . 3
|
| 30 | 4, 29 | syl 14 |
. 2
|
| 31 | 2, 10, 28, 30 | mpbir3and 1204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-submnd 13488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |