| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubmd | Unicode version | ||
| Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| issubmd.b |
|
| issubmd.p |
|
| issubmd.z |
|
| issubmd.m |
|
| issubmd.cz |
|
| issubmd.cp |
|
| issubmd.ch |
|
| issubmd.th |
|
| issubmd.ta |
|
| issubmd.et |
|
| Ref | Expression |
|---|---|
| issubmd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3277 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | issubmd.ch |
. . 3
| |
| 4 | issubmd.m |
. . . 4
| |
| 5 | issubmd.b |
. . . . 5
| |
| 6 | issubmd.z |
. . . . 5
| |
| 7 | 5, 6 | mndidcl 13233 |
. . . 4
|
| 8 | 4, 7 | syl 14 |
. . 3
|
| 9 | issubmd.cz |
. . 3
| |
| 10 | 3, 8, 9 | elrabd 2930 |
. 2
|
| 11 | issubmd.th |
. . . . . 6
| |
| 12 | 11 | elrab 2928 |
. . . . 5
|
| 13 | issubmd.ta |
. . . . . 6
| |
| 14 | 13 | elrab 2928 |
. . . . 5
|
| 15 | 12, 14 | anbi12i 460 |
. . . 4
|
| 16 | issubmd.et |
. . . . 5
| |
| 17 | 4 | adantr 276 |
. . . . . 6
|
| 18 | simprll 537 |
. . . . . 6
| |
| 19 | simprrl 539 |
. . . . . 6
| |
| 20 | issubmd.p |
. . . . . . 7
| |
| 21 | 5, 20 | mndcl 13226 |
. . . . . 6
|
| 22 | 17, 18, 19, 21 | syl3anc 1249 |
. . . . 5
|
| 23 | an4 586 |
. . . . . 6
| |
| 24 | issubmd.cp |
. . . . . 6
| |
| 25 | 23, 24 | sylan2b 287 |
. . . . 5
|
| 26 | 16, 22, 25 | elrabd 2930 |
. . . 4
|
| 27 | 15, 26 | sylan2b 287 |
. . 3
|
| 28 | 27 | ralrimivva 2587 |
. 2
|
| 29 | 5, 6, 20 | issubm 13275 |
. . 3
|
| 30 | 4, 29 | syl 14 |
. 2
|
| 31 | 2, 10, 28, 30 | mpbir3and 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-submnd 13263 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |