| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubmd | Unicode version | ||
| Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| issubmd.b |
|
| issubmd.p |
|
| issubmd.z |
|
| issubmd.m |
|
| issubmd.cz |
|
| issubmd.cp |
|
| issubmd.ch |
|
| issubmd.th |
|
| issubmd.ta |
|
| issubmd.et |
|
| Ref | Expression |
|---|---|
| issubmd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3268 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | issubmd.ch |
. . 3
| |
| 4 | issubmd.m |
. . . 4
| |
| 5 | issubmd.b |
. . . . 5
| |
| 6 | issubmd.z |
. . . . 5
| |
| 7 | 5, 6 | mndidcl 13071 |
. . . 4
|
| 8 | 4, 7 | syl 14 |
. . 3
|
| 9 | issubmd.cz |
. . 3
| |
| 10 | 3, 8, 9 | elrabd 2922 |
. 2
|
| 11 | issubmd.th |
. . . . . 6
| |
| 12 | 11 | elrab 2920 |
. . . . 5
|
| 13 | issubmd.ta |
. . . . . 6
| |
| 14 | 13 | elrab 2920 |
. . . . 5
|
| 15 | 12, 14 | anbi12i 460 |
. . . 4
|
| 16 | issubmd.et |
. . . . 5
| |
| 17 | 4 | adantr 276 |
. . . . . 6
|
| 18 | simprll 537 |
. . . . . 6
| |
| 19 | simprrl 539 |
. . . . . 6
| |
| 20 | issubmd.p |
. . . . . . 7
| |
| 21 | 5, 20 | mndcl 13064 |
. . . . . 6
|
| 22 | 17, 18, 19, 21 | syl3anc 1249 |
. . . . 5
|
| 23 | an4 586 |
. . . . . 6
| |
| 24 | issubmd.cp |
. . . . . 6
| |
| 25 | 23, 24 | sylan2b 287 |
. . . . 5
|
| 26 | 16, 22, 25 | elrabd 2922 |
. . . 4
|
| 27 | 15, 26 | sylan2b 287 |
. . 3
|
| 28 | 27 | ralrimivva 2579 |
. 2
|
| 29 | 5, 6, 20 | issubm 13104 |
. . 3
|
| 30 | 4, 29 | syl 14 |
. 2
|
| 31 | 2, 10, 28, 30 | mpbir3and 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-submnd 13092 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |