| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > en2i | GIF version | ||
| Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| en2i.1 | ⊢ 𝐴 ∈ V | 
| en2i.2 | ⊢ 𝐵 ∈ V | 
| en2i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) | 
| en2i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) | 
| en2i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) | 
| Ref | Expression | 
|---|---|
| en2i | ⊢ 𝐴 ≈ 𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | en2i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) | 
| 3 | en2i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) | 
| 5 | en2i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) | 
| 7 | en2i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) | |
| 8 | 7 | a1i 9 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) | 
| 9 | en2i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) | |
| 10 | 9 | a1i 9 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) | 
| 11 | 2, 4, 6, 8, 10 | en2d 6827 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) | 
| 12 | 11 | mptru 1373 | 1 ⊢ 𝐴 ≈ 𝐵 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 ≈ cen 6797 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-en 6800 | 
| This theorem is referenced by: mapsnen 6870 xpsnen 6880 xpassen 6889 | 
| Copyright terms: Public domain | W3C validator |