ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashen Unicode version

Theorem hashen 10951
Description: Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashen  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  A
)  =  ( `  B
)  <->  A  ~~  B ) )

Proof of Theorem hashen
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6865 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantr 276 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6865 . . . . 5  |-  ( B  e.  Fin  <->  E. m  e.  om  B  ~~  m
)
54biimpi 120 . . . 4  |-  ( B  e.  Fin  ->  E. m  e.  om  B  ~~  m
)
65ad2antlr 489 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  B  ~~  m
)
7 simplrl 535 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  n  e.  om )
8 simprl 529 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  m  e.  om )
9 nneneq 6969 . . . . 5  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  ~~  m  <->  n  =  m ) )
107, 8, 9syl2anc 411 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( n  ~~  m  <->  n  =  m ) )
11 simplrr 536 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  A  ~~  n )
12 enen1 6952 . . . . . 6  |-  ( A 
~~  n  ->  ( A  ~~  B  <->  n  ~~  B ) )
1311, 12syl 14 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( A  ~~  B  <->  n 
~~  B ) )
14 simprr 531 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  B  ~~  m )
15 enen2 6953 . . . . . 6  |-  ( B 
~~  m  ->  (
n  ~~  B  <->  n  ~~  m ) )
1614, 15syl 14 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( n  ~~  B  <->  n 
~~  m ) )
1713, 16bitrd 188 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( A  ~~  B  <->  n 
~~  m ) )
1811ensymd 6888 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  n  ~~  A )
19 hashennn 10947 . . . . . . 7  |-  ( ( n  e.  om  /\  n  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
207, 18, 19syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
2114ensymd 6888 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  m  ~~  B )
22 hashennn 10947 . . . . . . 7  |-  ( ( m  e.  om  /\  m  ~~  B )  -> 
( `  B )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  m ) )
238, 21, 22syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( `  B )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  m ) )
2420, 23eqeq12d 2221 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( ( `  A
)  =  ( `  B
)  <->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
25 0zd 9404 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
0  e.  ZZ )
26 eqid 2206 . . . . . . . 8  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
2725, 26frec2uzf1od 10573 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-onto-> ( ZZ>=
`  0 ) )
28 f1of1 5533 . . . . . . 7  |-  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) : om -1-1-onto-> ( ZZ>= `  0 )  -> frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-> (
ZZ>= `  0 ) )
2927, 28syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-> (
ZZ>= `  0 ) )
30 f1fveq 5854 . . . . . 6  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-> (
ZZ>= `  0 )  /\  ( n  e.  om  /\  m  e.  om )
)  ->  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  n
)  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  m )  <-> 
n  =  m ) )
3129, 7, 8, 30syl12anc 1248 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `
 n )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  m )  <->  n  =  m ) )
3224, 31bitrd 188 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( ( `  A
)  =  ( `  B
)  <->  n  =  m
) )
3310, 17, 323bitr4rd 221 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( ( `  A
)  =  ( `  B
)  <->  A  ~~  B ) )
346, 33rexlimddv 2629 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( ( `  A )  =  ( `  B )  <->  A  ~~  B ) )
353, 34rexlimddv 2629 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  A
)  =  ( `  B
)  <->  A  ~~  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   E.wrex 2486   class class class wbr 4051    |-> cmpt 4113   omcom 4646   -1-1->wf1 5277   -1-1-onto->wf1o 5279   ` cfv 5280  (class class class)co 5957  freccfrec 6489    ~~ cen 6838   Fincfn 6840   0cc0 7945   1c1 7946    + caddc 7948   ZZcz 9392   ZZ>=cuz 9668  ♯chash 10942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-recs 6404  df-frec 6490  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-ihash 10943
This theorem is referenced by:  hasheqf1o  10952  isfinite4im  10959  fihasheq0  10960  hashsng  10965  fihashen1  10966  fihashfn  10967  hashun  10972  hashfz  10988  hashxp  10993  hash2en  11010  mertenslemi1  11921  hashdvds  12618  crth  12621  phimullem  12622  eulerth  12630  4sqlem11  12799  znhash  14493  lgsquadlem1  15629  lgsquadlem2  15630  lgsquadlem3  15631
  Copyright terms: Public domain W3C validator