ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5fin Unicode version

Theorem php5fin 6848
Description: A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.)
Assertion
Ref Expression
php5fin  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
) )

Proof of Theorem php5fin
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 isfi 6727 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantr 274 . 2  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  E. n  e.  om  A  ~~  n )
4 php5 6824 . . . 4  |-  ( n  e.  om  ->  -.  n  ~~  suc  n )
54ad2antrl 482 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  n  ~~  suc  n
)
6 enen1 6806 . . . . 5  |-  ( A 
~~  n  ->  ( A  ~~  ( A  u.  { B } )  <->  n  ~~  ( A  u.  { B } ) ) )
76ad2antll 483 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  ~~  ( A  u.  { B } )  <->  n  ~~  ( A  u.  { B } ) ) )
8 fiunsnnn 6847 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  ~~  suc  n )
9 enen2 6807 . . . . 5  |-  ( ( A  u.  { B } )  ~~  suc  n  ->  ( n  ~~  ( A  u.  { B } )  <->  n  ~~  suc  n ) )
108, 9syl 14 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( n  ~~  ( A  u.  { B } )  <->  n  ~~  suc  n ) )
117, 10bitrd 187 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  ~~  ( A  u.  { B } )  <->  n  ~~  suc  n ) )
125, 11mtbird 663 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  A  ~~  ( A  u.  { B }
) )
133, 12rexlimddv 2588 1  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   E.wrex 2445   _Vcvv 2726    \ cdif 3113    u. cun 3114   {csn 3576   class class class wbr 3982   suc csuc 4343   omcom 4567    ~~ cen 6704   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  unsnfidcex  6885  unsnfidcel  6886
  Copyright terms: Public domain W3C validator