ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  carden2bex Unicode version

Theorem carden2bex 7323
Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
carden2bex  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem carden2bex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 enen2 6963 . . . . 5  |-  ( A 
~~  B  ->  (
y  ~~  A  <->  y  ~~  B ) )
21rabbidv 2765 . . . 4  |-  ( A 
~~  B  ->  { y  e.  On  |  y 
~~  A }  =  { y  e.  On  |  y  ~~  B }
)
32inteqd 3904 . . 3  |-  ( A 
~~  B  ->  |^| { y  e.  On  |  y 
~~  A }  =  |^| { y  e.  On  |  y  ~~  B }
)
43adantr 276 . 2  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  |^| { y  e.  On  |  y 
~~  A }  =  |^| { y  e.  On  |  y  ~~  B }
)
5 cardval3ex 7318 . . 3  |-  ( E. x  e.  On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
65adantl 277 . 2  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  A )  = 
|^| { y  e.  On  |  y  ~~  A }
)
7 entr 6899 . . . . . 6  |-  ( ( x  ~~  A  /\  A  ~~  B )  ->  x  ~~  B )
87expcom 116 . . . . 5  |-  ( A 
~~  B  ->  (
x  ~~  A  ->  x 
~~  B ) )
98reximdv 2609 . . . 4  |-  ( A 
~~  B  ->  ( E. x  e.  On  x  ~~  A  ->  E. x  e.  On  x  ~~  B
) )
109imp 124 . . 3  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  E. x  e.  On  x  ~~  B
)
11 cardval3ex 7318 . . 3  |-  ( E. x  e.  On  x  ~~  B  ->  ( card `  B )  =  |^| { y  e.  On  | 
y  ~~  B }
)
1210, 11syl 14 . 2  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  B )  = 
|^| { y  e.  On  |  y  ~~  B }
)
134, 6, 123eqtr4d 2250 1  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wrex 2487   {crab 2490   |^|cint 3899   class class class wbr 4059   Oncon0 4428   ` cfv 5290    ~~ cen 6848   cardccrd 7310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-er 6643  df-en 6851  df-card 7312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator