ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  carden2bex Unicode version

Theorem carden2bex 7249
Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
carden2bex  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem carden2bex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 enen2 6897 . . . . 5  |-  ( A 
~~  B  ->  (
y  ~~  A  <->  y  ~~  B ) )
21rabbidv 2749 . . . 4  |-  ( A 
~~  B  ->  { y  e.  On  |  y 
~~  A }  =  { y  e.  On  |  y  ~~  B }
)
32inteqd 3875 . . 3  |-  ( A 
~~  B  ->  |^| { y  e.  On  |  y 
~~  A }  =  |^| { y  e.  On  |  y  ~~  B }
)
43adantr 276 . 2  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  |^| { y  e.  On  |  y 
~~  A }  =  |^| { y  e.  On  |  y  ~~  B }
)
5 cardval3ex 7245 . . 3  |-  ( E. x  e.  On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
65adantl 277 . 2  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  A )  = 
|^| { y  e.  On  |  y  ~~  A }
)
7 entr 6838 . . . . . 6  |-  ( ( x  ~~  A  /\  A  ~~  B )  ->  x  ~~  B )
87expcom 116 . . . . 5  |-  ( A 
~~  B  ->  (
x  ~~  A  ->  x 
~~  B ) )
98reximdv 2595 . . . 4  |-  ( A 
~~  B  ->  ( E. x  e.  On  x  ~~  A  ->  E. x  e.  On  x  ~~  B
) )
109imp 124 . . 3  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  E. x  e.  On  x  ~~  B
)
11 cardval3ex 7245 . . 3  |-  ( E. x  e.  On  x  ~~  B  ->  ( card `  B )  =  |^| { y  e.  On  | 
y  ~~  B }
)
1210, 11syl 14 . 2  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  B )  = 
|^| { y  e.  On  |  y  ~~  B }
)
134, 6, 123eqtr4d 2236 1  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wrex 2473   {crab 2476   |^|cint 3870   class class class wbr 4029   Oncon0 4394   ` cfv 5254    ~~ cen 6792   cardccrd 7239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-card 7240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator