ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  carden2bex Unicode version

Theorem carden2bex 7256
Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
carden2bex  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem carden2bex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 enen2 6902 . . . . 5  |-  ( A 
~~  B  ->  (
y  ~~  A  <->  y  ~~  B ) )
21rabbidv 2752 . . . 4  |-  ( A 
~~  B  ->  { y  e.  On  |  y 
~~  A }  =  { y  e.  On  |  y  ~~  B }
)
32inteqd 3879 . . 3  |-  ( A 
~~  B  ->  |^| { y  e.  On  |  y 
~~  A }  =  |^| { y  e.  On  |  y  ~~  B }
)
43adantr 276 . 2  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  |^| { y  e.  On  |  y 
~~  A }  =  |^| { y  e.  On  |  y  ~~  B }
)
5 cardval3ex 7252 . . 3  |-  ( E. x  e.  On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e.  On  | 
y  ~~  A }
)
65adantl 277 . 2  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  A )  = 
|^| { y  e.  On  |  y  ~~  A }
)
7 entr 6843 . . . . . 6  |-  ( ( x  ~~  A  /\  A  ~~  B )  ->  x  ~~  B )
87expcom 116 . . . . 5  |-  ( A 
~~  B  ->  (
x  ~~  A  ->  x 
~~  B ) )
98reximdv 2598 . . . 4  |-  ( A 
~~  B  ->  ( E. x  e.  On  x  ~~  A  ->  E. x  e.  On  x  ~~  B
) )
109imp 124 . . 3  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  E. x  e.  On  x  ~~  B
)
11 cardval3ex 7252 . . 3  |-  ( E. x  e.  On  x  ~~  B  ->  ( card `  B )  =  |^| { y  e.  On  | 
y  ~~  B }
)
1210, 11syl 14 . 2  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  B )  = 
|^| { y  e.  On  |  y  ~~  B }
)
134, 6, 123eqtr4d 2239 1  |-  ( ( A  ~~  B  /\  E. x  e.  On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wrex 2476   {crab 2479   |^|cint 3874   class class class wbr 4033   Oncon0 4398   ` cfv 5258    ~~ cen 6797   cardccrd 7246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-card 7247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator