![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enen2 | GIF version |
Description: Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
Ref | Expression |
---|---|
enen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≈ 𝐴 ↔ 𝐶 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | entr 6608 | . . 3 ⊢ ((𝐶 ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≈ 𝐵) | |
2 | 1 | ancoms 266 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐴) → 𝐶 ≈ 𝐵) |
3 | ensym 6605 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
4 | entr 6608 | . . . 4 ⊢ ((𝐶 ≈ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≈ 𝐴) | |
5 | 4 | ancoms 266 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≈ 𝐵) → 𝐶 ≈ 𝐴) |
6 | 3, 5 | sylan 279 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐵) → 𝐶 ≈ 𝐴) |
7 | 2, 6 | impbida 566 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≈ 𝐴 ↔ 𝐶 ≈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 class class class wbr 3875 ≈ cen 6562 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-er 6359 df-en 6565 |
This theorem is referenced by: php5fin 6705 carden2bex 6956 hashen 10371 |
Copyright terms: Public domain | W3C validator |