| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressval3d | Unicode version | ||
| Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressval3d.r |
|
| ressval3d.b |
|
| ressval3d.e |
|
| ressval3d.s |
|
| ressval3d.f |
|
| ressval3d.d |
|
| ressval3d.u |
|
| Ref | Expression |
|---|---|
| ressval3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressval3d.r |
. . 3
| |
| 2 | ressval3d.s |
. . . 4
| |
| 3 | ressval3d.b |
. . . . . 6
| |
| 4 | basfn 13091 |
. . . . . . 7
| |
| 5 | 2 | elexd 2813 |
. . . . . . 7
|
| 6 | funfvex 5644 |
. . . . . . . 8
| |
| 7 | 6 | funfni 5423 |
. . . . . . 7
|
| 8 | 4, 5, 7 | sylancr 414 |
. . . . . 6
|
| 9 | 3, 8 | eqeltrid 2316 |
. . . . 5
|
| 10 | ressval3d.u |
. . . . 5
| |
| 11 | 9, 10 | ssexd 4224 |
. . . 4
|
| 12 | ressvalsets 13097 |
. . . 4
| |
| 13 | 2, 11, 12 | syl2anc 411 |
. . 3
|
| 14 | 1, 13 | eqtrid 2274 |
. 2
|
| 15 | ressval3d.e |
. . . . 5
| |
| 16 | 15 | a1i 9 |
. . . 4
|
| 17 | df-ss 3210 |
. . . . . 6
| |
| 18 | 10, 17 | sylib 122 |
. . . . 5
|
| 19 | 3 | ineq2i 3402 |
. . . . 5
|
| 20 | 18, 19 | eqtr3di 2277 |
. . . 4
|
| 21 | 16, 20 | opeq12d 3865 |
. . 3
|
| 22 | 21 | oveq2d 6017 |
. 2
|
| 23 | 14, 22 | eqtr4d 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |