ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval3d Unicode version

Theorem ressval3d 12690
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
ressval3d.r  |-  R  =  ( Ss  A )
ressval3d.b  |-  B  =  ( Base `  S
)
ressval3d.e  |-  E  =  ( Base `  ndx )
ressval3d.s  |-  ( ph  ->  S  e.  V )
ressval3d.f  |-  ( ph  ->  Fun  S )
ressval3d.d  |-  ( ph  ->  E  e.  dom  S
)
ressval3d.u  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ressval3d  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.r . . 3  |-  R  =  ( Ss  A )
2 ressval3d.s . . . 4  |-  ( ph  ->  S  e.  V )
3 ressval3d.b . . . . . 6  |-  B  =  ( Base `  S
)
4 basfn 12676 . . . . . . 7  |-  Base  Fn  _V
52elexd 2773 . . . . . . 7  |-  ( ph  ->  S  e.  _V )
6 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
76funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
84, 5, 7sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  S
)  e.  _V )
93, 8eqeltrid 2280 . . . . 5  |-  ( ph  ->  B  e.  _V )
10 ressval3d.u . . . . 5  |-  ( ph  ->  A  C_  B )
119, 10ssexd 4169 . . . 4  |-  ( ph  ->  A  e.  _V )
12 ressvalsets 12682 . . . 4  |-  ( ( S  e.  V  /\  A  e.  _V )  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
132, 11, 12syl2anc 411 . . 3  |-  ( ph  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
141, 13eqtrid 2238 . 2  |-  ( ph  ->  R  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
15 ressval3d.e . . . . 5  |-  E  =  ( Base `  ndx )
1615a1i 9 . . . 4  |-  ( ph  ->  E  =  ( Base `  ndx ) )
17 df-ss 3166 . . . . . 6  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
1810, 17sylib 122 . . . . 5  |-  ( ph  ->  ( A  i^i  B
)  =  A )
193ineq2i 3357 . . . . 5  |-  ( A  i^i  B )  =  ( A  i^i  ( Base `  S ) )
2018, 19eqtr3di 2241 . . . 4  |-  ( ph  ->  A  =  ( A  i^i  ( Base `  S
) ) )
2116, 20opeq12d 3812 . . 3  |-  ( ph  -> 
<. E ,  A >.  = 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
2221oveq2d 5934 . 2  |-  ( ph  ->  ( S sSet  <. E ,  A >. )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
2314, 22eqtr4d 2229 1  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152    C_ wss 3153   <.cop 3621   dom cdm 4659   Fun wfun 5248    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   ndxcnx 12615   sSet csts 12616   Basecbs 12618   ↾s cress 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator