ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval3d Unicode version

Theorem ressval3d 13105
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
ressval3d.r  |-  R  =  ( Ss  A )
ressval3d.b  |-  B  =  ( Base `  S
)
ressval3d.e  |-  E  =  ( Base `  ndx )
ressval3d.s  |-  ( ph  ->  S  e.  V )
ressval3d.f  |-  ( ph  ->  Fun  S )
ressval3d.d  |-  ( ph  ->  E  e.  dom  S
)
ressval3d.u  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ressval3d  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.r . . 3  |-  R  =  ( Ss  A )
2 ressval3d.s . . . 4  |-  ( ph  ->  S  e.  V )
3 ressval3d.b . . . . . 6  |-  B  =  ( Base `  S
)
4 basfn 13091 . . . . . . 7  |-  Base  Fn  _V
52elexd 2813 . . . . . . 7  |-  ( ph  ->  S  e.  _V )
6 funfvex 5644 . . . . . . . 8  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
76funfni 5423 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
84, 5, 7sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  S
)  e.  _V )
93, 8eqeltrid 2316 . . . . 5  |-  ( ph  ->  B  e.  _V )
10 ressval3d.u . . . . 5  |-  ( ph  ->  A  C_  B )
119, 10ssexd 4224 . . . 4  |-  ( ph  ->  A  e.  _V )
12 ressvalsets 13097 . . . 4  |-  ( ( S  e.  V  /\  A  e.  _V )  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
132, 11, 12syl2anc 411 . . 3  |-  ( ph  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
141, 13eqtrid 2274 . 2  |-  ( ph  ->  R  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
15 ressval3d.e . . . . 5  |-  E  =  ( Base `  ndx )
1615a1i 9 . . . 4  |-  ( ph  ->  E  =  ( Base `  ndx ) )
17 df-ss 3210 . . . . . 6  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
1810, 17sylib 122 . . . . 5  |-  ( ph  ->  ( A  i^i  B
)  =  A )
193ineq2i 3402 . . . . 5  |-  ( A  i^i  B )  =  ( A  i^i  ( Base `  S ) )
2018, 19eqtr3di 2277 . . . 4  |-  ( ph  ->  A  =  ( A  i^i  ( Base `  S
) ) )
2116, 20opeq12d 3865 . . 3  |-  ( ph  -> 
<. E ,  A >.  = 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
2221oveq2d 6017 . 2  |-  ( ph  ->  ( S sSet  <. E ,  A >. )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
2314, 22eqtr4d 2265 1  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196    C_ wss 3197   <.cop 3669   dom cdm 4719   Fun wfun 5312    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   ndxcnx 13029   sSet csts 13030   Basecbs 13032   ↾s cress 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator