ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval3d Unicode version

Theorem ressval3d 13019
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
ressval3d.r  |-  R  =  ( Ss  A )
ressval3d.b  |-  B  =  ( Base `  S
)
ressval3d.e  |-  E  =  ( Base `  ndx )
ressval3d.s  |-  ( ph  ->  S  e.  V )
ressval3d.f  |-  ( ph  ->  Fun  S )
ressval3d.d  |-  ( ph  ->  E  e.  dom  S
)
ressval3d.u  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ressval3d  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.r . . 3  |-  R  =  ( Ss  A )
2 ressval3d.s . . . 4  |-  ( ph  ->  S  e.  V )
3 ressval3d.b . . . . . 6  |-  B  =  ( Base `  S
)
4 basfn 13005 . . . . . . 7  |-  Base  Fn  _V
52elexd 2790 . . . . . . 7  |-  ( ph  ->  S  e.  _V )
6 funfvex 5616 . . . . . . . 8  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
76funfni 5395 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
84, 5, 7sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  S
)  e.  _V )
93, 8eqeltrid 2294 . . . . 5  |-  ( ph  ->  B  e.  _V )
10 ressval3d.u . . . . 5  |-  ( ph  ->  A  C_  B )
119, 10ssexd 4200 . . . 4  |-  ( ph  ->  A  e.  _V )
12 ressvalsets 13011 . . . 4  |-  ( ( S  e.  V  /\  A  e.  _V )  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
132, 11, 12syl2anc 411 . . 3  |-  ( ph  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
141, 13eqtrid 2252 . 2  |-  ( ph  ->  R  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
15 ressval3d.e . . . . 5  |-  E  =  ( Base `  ndx )
1615a1i 9 . . . 4  |-  ( ph  ->  E  =  ( Base `  ndx ) )
17 df-ss 3187 . . . . . 6  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
1810, 17sylib 122 . . . . 5  |-  ( ph  ->  ( A  i^i  B
)  =  A )
193ineq2i 3379 . . . . 5  |-  ( A  i^i  B )  =  ( A  i^i  ( Base `  S ) )
2018, 19eqtr3di 2255 . . . 4  |-  ( ph  ->  A  =  ( A  i^i  ( Base `  S
) ) )
2116, 20opeq12d 3841 . . 3  |-  ( ph  -> 
<. E ,  A >.  = 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
2221oveq2d 5983 . 2  |-  ( ph  ->  ( S sSet  <. E ,  A >. )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
2314, 22eqtr4d 2243 1  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173    C_ wss 3174   <.cop 3646   dom cdm 4693   Fun wfun 5284    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   ndxcnx 12944   sSet csts 12945   Basecbs 12947   ↾s cress 12948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator