ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval3d Unicode version

Theorem ressval3d 12904
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
ressval3d.r  |-  R  =  ( Ss  A )
ressval3d.b  |-  B  =  ( Base `  S
)
ressval3d.e  |-  E  =  ( Base `  ndx )
ressval3d.s  |-  ( ph  ->  S  e.  V )
ressval3d.f  |-  ( ph  ->  Fun  S )
ressval3d.d  |-  ( ph  ->  E  e.  dom  S
)
ressval3d.u  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ressval3d  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.r . . 3  |-  R  =  ( Ss  A )
2 ressval3d.s . . . 4  |-  ( ph  ->  S  e.  V )
3 ressval3d.b . . . . . 6  |-  B  =  ( Base `  S
)
4 basfn 12890 . . . . . . 7  |-  Base  Fn  _V
52elexd 2785 . . . . . . 7  |-  ( ph  ->  S  e.  _V )
6 funfvex 5593 . . . . . . . 8  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
76funfni 5376 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
84, 5, 7sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  S
)  e.  _V )
93, 8eqeltrid 2292 . . . . 5  |-  ( ph  ->  B  e.  _V )
10 ressval3d.u . . . . 5  |-  ( ph  ->  A  C_  B )
119, 10ssexd 4184 . . . 4  |-  ( ph  ->  A  e.  _V )
12 ressvalsets 12896 . . . 4  |-  ( ( S  e.  V  /\  A  e.  _V )  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
132, 11, 12syl2anc 411 . . 3  |-  ( ph  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
141, 13eqtrid 2250 . 2  |-  ( ph  ->  R  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
15 ressval3d.e . . . . 5  |-  E  =  ( Base `  ndx )
1615a1i 9 . . . 4  |-  ( ph  ->  E  =  ( Base `  ndx ) )
17 df-ss 3179 . . . . . 6  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
1810, 17sylib 122 . . . . 5  |-  ( ph  ->  ( A  i^i  B
)  =  A )
193ineq2i 3371 . . . . 5  |-  ( A  i^i  B )  =  ( A  i^i  ( Base `  S ) )
2018, 19eqtr3di 2253 . . . 4  |-  ( ph  ->  A  =  ( A  i^i  ( Base `  S
) ) )
2116, 20opeq12d 3827 . . 3  |-  ( ph  -> 
<. E ,  A >.  = 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
2221oveq2d 5960 . 2  |-  ( ph  ->  ( S sSet  <. E ,  A >. )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
2314, 22eqtr4d 2241 1  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165    C_ wss 3166   <.cop 3636   dom cdm 4675   Fun wfun 5265    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   ndxcnx 12829   sSet csts 12830   Basecbs 12832   ↾s cress 12833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator