ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval3d Unicode version

Theorem ressval3d 12750
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
Hypotheses
Ref Expression
ressval3d.r  |-  R  =  ( Ss  A )
ressval3d.b  |-  B  =  ( Base `  S
)
ressval3d.e  |-  E  =  ( Base `  ndx )
ressval3d.s  |-  ( ph  ->  S  e.  V )
ressval3d.f  |-  ( ph  ->  Fun  S )
ressval3d.d  |-  ( ph  ->  E  e.  dom  S
)
ressval3d.u  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ressval3d  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.r . . 3  |-  R  =  ( Ss  A )
2 ressval3d.s . . . 4  |-  ( ph  ->  S  e.  V )
3 ressval3d.b . . . . . 6  |-  B  =  ( Base `  S
)
4 basfn 12736 . . . . . . 7  |-  Base  Fn  _V
52elexd 2776 . . . . . . 7  |-  ( ph  ->  S  e.  _V )
6 funfvex 5575 . . . . . . . 8  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
76funfni 5358 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
84, 5, 7sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  S
)  e.  _V )
93, 8eqeltrid 2283 . . . . 5  |-  ( ph  ->  B  e.  _V )
10 ressval3d.u . . . . 5  |-  ( ph  ->  A  C_  B )
119, 10ssexd 4173 . . . 4  |-  ( ph  ->  A  e.  _V )
12 ressvalsets 12742 . . . 4  |-  ( ( S  e.  V  /\  A  e.  _V )  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
132, 11, 12syl2anc 411 . . 3  |-  ( ph  ->  ( Ss  A )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
141, 13eqtrid 2241 . 2  |-  ( ph  ->  R  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
15 ressval3d.e . . . . 5  |-  E  =  ( Base `  ndx )
1615a1i 9 . . . 4  |-  ( ph  ->  E  =  ( Base `  ndx ) )
17 df-ss 3170 . . . . . 6  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
1810, 17sylib 122 . . . . 5  |-  ( ph  ->  ( A  i^i  B
)  =  A )
193ineq2i 3361 . . . . 5  |-  ( A  i^i  B )  =  ( A  i^i  ( Base `  S ) )
2018, 19eqtr3di 2244 . . . 4  |-  ( ph  ->  A  =  ( A  i^i  ( Base `  S
) ) )
2116, 20opeq12d 3816 . . 3  |-  ( ph  -> 
<. E ,  A >.  = 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
2221oveq2d 5938 . 2  |-  ( ph  ->  ( S sSet  <. E ,  A >. )  =  ( S sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  S
) ) >. )
)
2314, 22eqtr4d 2232 1  |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156    C_ wss 3157   <.cop 3625   dom cdm 4663   Fun wfun 5252    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   ndxcnx 12675   sSet csts 12676   Basecbs 12678   ↾s cress 12679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator