| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unen | Unicode version | ||
| Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| unen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6837 |
. . 3
| |
| 2 | bren 6837 |
. . 3
| |
| 3 | eeanv 1960 |
. . . 4
| |
| 4 | vex 2775 |
. . . . . . . 8
| |
| 5 | vex 2775 |
. . . . . . . 8
| |
| 6 | 4, 5 | unex 4489 |
. . . . . . 7
|
| 7 | f1oun 5544 |
. . . . . . 7
| |
| 8 | f1oen3g 6847 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | sylancr 414 |
. . . . . 6
|
| 10 | 9 | ex 115 |
. . . . 5
|
| 11 | 10 | exlimivv 1920 |
. . . 4
|
| 12 | 3, 11 | sylbir 135 |
. . 3
|
| 13 | 1, 2, 12 | syl2anb 291 |
. 2
|
| 14 | 13 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-en 6830 |
| This theorem is referenced by: enpr2d 6913 phplem2 6952 fiunsnnn 6980 unsnfi 7018 endjusym 7200 pm54.43 7300 endjudisj 7324 djuen 7325 frecfzennn 10573 unennn 12801 |
| Copyright terms: Public domain | W3C validator |