| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unen | Unicode version | ||
| Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| unen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6858 |
. . 3
| |
| 2 | bren 6858 |
. . 3
| |
| 3 | eeanv 1961 |
. . . 4
| |
| 4 | vex 2779 |
. . . . . . . 8
| |
| 5 | vex 2779 |
. . . . . . . 8
| |
| 6 | 4, 5 | unex 4506 |
. . . . . . 7
|
| 7 | f1oun 5564 |
. . . . . . 7
| |
| 8 | f1oen3g 6868 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | sylancr 414 |
. . . . . 6
|
| 10 | 9 | ex 115 |
. . . . 5
|
| 11 | 10 | exlimivv 1921 |
. . . 4
|
| 12 | 3, 11 | sylbir 135 |
. . 3
|
| 13 | 1, 2, 12 | syl2anb 291 |
. 2
|
| 14 | 13 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-en 6851 |
| This theorem is referenced by: enpr2d 6935 phplem2 6975 fiunsnnn 7004 unsnfi 7042 endjusym 7224 pm54.43 7324 endjudisj 7353 djuen 7354 frecfzennn 10608 unennn 12883 |
| Copyright terms: Public domain | W3C validator |