ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unen Unicode version

Theorem unen 6908
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
unen  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)

Proof of Theorem unen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6835 . . 3  |-  ( A 
~~  B  <->  E. x  x : A -1-1-onto-> B )
2 bren 6835 . . 3  |-  ( C 
~~  D  <->  E. y 
y : C -1-1-onto-> D )
3 eeanv 1960 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  <->  ( E. x  x : A -1-1-onto-> B  /\  E. y  y : C -1-1-onto-> D
) )
4 vex 2775 . . . . . . . 8  |-  x  e. 
_V
5 vex 2775 . . . . . . . 8  |-  y  e. 
_V
64, 5unex 4488 . . . . . . 7  |-  ( x  u.  y )  e. 
_V
7 f1oun 5542 . . . . . . 7  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( x  u.  y ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )
8 f1oen3g 6845 . . . . . . 7  |-  ( ( ( x  u.  y
)  e.  _V  /\  ( x  u.  y
) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
96, 7, 8sylancr 414 . . . . . 6  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
109ex 115 . . . . 5  |-  ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
1110exlimivv 1920 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
123, 11sylbir 135 . . 3  |-  ( ( E. x  x : A -1-1-onto-> B  /\  E. y 
y : C -1-1-onto-> D )  ->  ( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
131, 2, 12syl2anb 291 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  -> 
( A  u.  C
)  ~~  ( B  u.  D ) ) )
1413imp 124 1  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772    u. cun 3164    i^i cin 3165   (/)c0 3460   class class class wbr 4044   -1-1-onto->wf1o 5270    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-en 6828
This theorem is referenced by:  enpr2d  6911  phplem2  6950  fiunsnnn  6978  unsnfi  7016  endjusym  7198  pm54.43  7298  endjudisj  7322  djuen  7323  frecfzennn  10571  unennn  12768
  Copyright terms: Public domain W3C validator