| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unen | Unicode version | ||
| Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| unen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6895 |
. . 3
| |
| 2 | bren 6895 |
. . 3
| |
| 3 | eeanv 1983 |
. . . 4
| |
| 4 | vex 2802 |
. . . . . . . 8
| |
| 5 | vex 2802 |
. . . . . . . 8
| |
| 6 | 4, 5 | unex 4532 |
. . . . . . 7
|
| 7 | f1oun 5592 |
. . . . . . 7
| |
| 8 | f1oen3g 6905 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | sylancr 414 |
. . . . . 6
|
| 10 | 9 | ex 115 |
. . . . 5
|
| 11 | 10 | exlimivv 1943 |
. . . 4
|
| 12 | 3, 11 | sylbir 135 |
. . 3
|
| 13 | 1, 2, 12 | syl2anb 291 |
. 2
|
| 14 | 13 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-en 6888 |
| This theorem is referenced by: enpr2d 6972 phplem2 7014 fiunsnnn 7043 unsnfi 7081 endjusym 7263 pm54.43 7363 endjudisj 7392 djuen 7393 frecfzennn 10648 unennn 12968 |
| Copyright terms: Public domain | W3C validator |