ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unen Unicode version

Theorem unen 6718
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
unen  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)

Proof of Theorem unen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6649 . . 3  |-  ( A 
~~  B  <->  E. x  x : A -1-1-onto-> B )
2 bren 6649 . . 3  |-  ( C 
~~  D  <->  E. y 
y : C -1-1-onto-> D )
3 eeanv 1905 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  <->  ( E. x  x : A -1-1-onto-> B  /\  E. y  y : C -1-1-onto-> D
) )
4 vex 2692 . . . . . . . 8  |-  x  e. 
_V
5 vex 2692 . . . . . . . 8  |-  y  e. 
_V
64, 5unex 4370 . . . . . . 7  |-  ( x  u.  y )  e. 
_V
7 f1oun 5395 . . . . . . 7  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( x  u.  y ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )
8 f1oen3g 6656 . . . . . . 7  |-  ( ( ( x  u.  y
)  e.  _V  /\  ( x  u.  y
) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
96, 7, 8sylancr 411 . . . . . 6  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
109ex 114 . . . . 5  |-  ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
1110exlimivv 1869 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
123, 11sylbir 134 . . 3  |-  ( ( E. x  x : A -1-1-onto-> B  /\  E. y 
y : C -1-1-onto-> D )  ->  ( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
131, 2, 12syl2anb 289 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  -> 
( A  u.  C
)  ~~  ( B  u.  D ) ) )
1413imp 123 1  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332   E.wex 1469    e. wcel 1481   _Vcvv 2689    u. cun 3074    i^i cin 3075   (/)c0 3368   class class class wbr 3937   -1-1-onto->wf1o 5130    ~~ cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-en 6643
This theorem is referenced by:  enpr2d  6719  phplem2  6755  fiunsnnn  6783  unsnfi  6815  endjusym  6989  pm54.43  7063  endjudisj  7083  djuen  7084  frecfzennn  10230  unennn  11946
  Copyright terms: Public domain W3C validator