ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1 GIF version

Theorem fcof1 5762
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcof1 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)

Proof of Theorem fcof1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . 2 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴𝐵)
2 simprr 527 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
32fveq2d 5500 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑅‘(𝐹𝑥)) = (𝑅‘(𝐹𝑦)))
4 simpll 524 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹:𝐴𝐵)
5 simprll 532 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝐴)
6 fvco3 5567 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝑅𝐹)‘𝑥) = (𝑅‘(𝐹𝑥)))
74, 5, 6syl2anc 409 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = (𝑅‘(𝐹𝑥)))
8 simprlr 533 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝐴)
9 fvco3 5567 . . . . . . . 8 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝑅𝐹)‘𝑦) = (𝑅‘(𝐹𝑦)))
104, 8, 9syl2anc 409 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑦) = (𝑅‘(𝐹𝑦)))
113, 7, 103eqtr4d 2213 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = ((𝑅𝐹)‘𝑦))
12 simplr 525 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑅𝐹) = ( I ↾ 𝐴))
1312fveq1d 5498 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = (( I ↾ 𝐴)‘𝑥))
1412fveq1d 5498 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑦) = (( I ↾ 𝐴)‘𝑦))
1511, 13, 143eqtr3d 2211 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑥) = (( I ↾ 𝐴)‘𝑦))
16 fvresi 5689 . . . . . 6 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
175, 16syl 14 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
18 fvresi 5689 . . . . . 6 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
198, 18syl 14 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
2015, 17, 193eqtr3d 2211 . . . 4 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
2120expr 373 . . 3 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2221ralrimivva 2552 . 2 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
23 dff13 5747 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
241, 22, 23sylanbrc 415 1 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448   I cid 4273  cres 4613  ccom 4615  wf 5194  1-1wf1 5195  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fv 5206
This theorem is referenced by:  fcof1o  5768
  Copyright terms: Public domain W3C validator