| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴⟶𝐵) |
| 2 | | simprr 531 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 3 | 2 | fveq2d 5562 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑅‘(𝐹‘𝑥)) = (𝑅‘(𝐹‘𝑦))) |
| 4 | | simpll 527 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹:𝐴⟶𝐵) |
| 5 | | simprll 537 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 ∈ 𝐴) |
| 6 | | fvco3 5632 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝑅 ∘ 𝐹)‘𝑥) = (𝑅‘(𝐹‘𝑥))) |
| 7 | 4, 5, 6 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑥) = (𝑅‘(𝐹‘𝑥))) |
| 8 | | simprlr 538 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑦 ∈ 𝐴) |
| 9 | | fvco3 5632 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝑅 ∘ 𝐹)‘𝑦) = (𝑅‘(𝐹‘𝑦))) |
| 10 | 4, 8, 9 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑦) = (𝑅‘(𝐹‘𝑦))) |
| 11 | 3, 7, 10 | 3eqtr4d 2239 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑥) = ((𝑅 ∘ 𝐹)‘𝑦)) |
| 12 | | simplr 528 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) |
| 13 | 12 | fveq1d 5560 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑥) = (( I ↾ 𝐴)‘𝑥)) |
| 14 | 12 | fveq1d 5560 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑦) = (( I ↾ 𝐴)‘𝑦)) |
| 15 | 11, 13, 14 | 3eqtr3d 2237 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (( I ↾ 𝐴)‘𝑥) = (( I ↾ 𝐴)‘𝑦)) |
| 16 | | fvresi 5755 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
| 17 | 5, 16 | syl 14 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
| 18 | | fvresi 5755 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
| 19 | 8, 18 | syl 14 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
| 20 | 15, 17, 19 | 3eqtr3d 2237 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 = 𝑦) |
| 21 | 20 | expr 375 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 22 | 21 | ralrimivva 2579 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 23 | | dff13 5815 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 24 | 1, 22, 23 | sylanbrc 417 |
1
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴–1-1→𝐵) |