ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvresi Unicode version

Theorem fvresi 5779
Description: The value of a restricted identity function. (Contributed by NM, 19-May-2004.)
Assertion
Ref Expression
fvresi  |-  ( B  e.  A  ->  (
(  _I  |`  A ) `
 B )  =  B )

Proof of Theorem fvresi
StepHypRef Expression
1 fvres 5602 . 2  |-  ( B  e.  A  ->  (
(  _I  |`  A ) `
 B )  =  (  _I  `  B
) )
2 fvi 5638 . 2  |-  ( B  e.  A  ->  (  _I  `  B )  =  B )
31, 2eqtrd 2238 1  |-  ( B  e.  A  ->  (
(  _I  |`  A ) `
 B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176    _I cid 4336    |` cres 4678   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-res 4688  df-iota 5233  df-fun 5274  df-fv 5280
This theorem is referenced by:  f1ocnvfv1  5848  f1ocnvfv2  5849  fcof1  5854  fcofo  5855  isoid  5881  iordsmo  6385  omp1eomlem  7198  ctm  7213  ndxarg  12888  idmhm  13334  idghm  13628  dvid  15200  dvidre  15202
  Copyright terms: Public domain W3C validator