Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simprlr | Unicode version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simprlr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 | |
2 | 1 | ad2antrl 482 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: imain 5251 fcof1 5730 fliftfun 5743 sbthlemi6 6903 sbthlemi8 6905 addcmpblnq 7281 mulcmpblnq 7282 ordpipqqs 7288 enq0tr 7348 addcmpblnq0 7357 mulcmpblnq0 7358 nnnq0lem1 7360 addnq0mo 7361 mulnq0mo 7362 prarloclemcalc 7416 addlocpr 7450 distrlem4prl 7498 distrlem4pru 7499 addcmpblnr 7653 mulcmpblnrlemg 7654 mulcmpblnr 7655 prsrlem1 7656 addsrmo 7657 mulsrmo 7658 ltsrprg 7661 apreap 8456 apreim 8472 divdivdivap 8580 divsubdivap 8595 ledivdiv 8755 lediv12a 8759 exbtwnz 10143 seq3caopr 10375 leexp2r 10466 zfz1iso 10705 recvguniq 10888 rsqrmo 10920 summodclem2 11272 prodmodclem2 11467 prodmodc 11468 qredeu 11965 pw2dvdseu 12033 epttop 12461 txdis1cn 12649 metequiv2 12867 cncfmptc 12953 cncfmptid 12954 addccncf 12957 negcncf 12959 dedekindicclemicc 12981 |
Copyright terms: Public domain | W3C validator |