![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fcompt | GIF version |
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
fcompt | ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 5670 | . . 3 ⊢ ((𝐵:𝐶⟶𝐷 ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) | |
2 | 1 | adantll 476 | . 2 ⊢ (((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) |
3 | ffn 5384 | . . . 4 ⊢ (𝐵:𝐶⟶𝐷 → 𝐵 Fn 𝐶) | |
4 | 3 | adantl 277 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 Fn 𝐶) |
5 | dffn5im 5582 | . . 3 ⊢ (𝐵 Fn 𝐶 → 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) | |
6 | 4, 5 | syl 14 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
7 | ffn 5384 | . . . 4 ⊢ (𝐴:𝐷⟶𝐸 → 𝐴 Fn 𝐷) | |
8 | 7 | adantr 276 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 Fn 𝐷) |
9 | dffn5im 5582 | . . 3 ⊢ (𝐴 Fn 𝐷 → 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) | |
10 | 8, 9 | syl 14 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) |
11 | fveq2 5534 | . 2 ⊢ (𝑦 = (𝐵‘𝑥) → (𝐴‘𝑦) = (𝐴‘(𝐵‘𝑥))) | |
12 | 2, 6, 10, 11 | fmptco 5703 | 1 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ↦ cmpt 4079 ∘ ccom 4648 Fn wfn 5230 ⟶wf 5231 ‘cfv 5235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |