ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcompt GIF version

Theorem fcompt 5542
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcompt ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸

Proof of Theorem fcompt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 5505 . . 3 ((𝐵:𝐶𝐷𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
21adantll 465 . 2 (((𝐴:𝐷𝐸𝐵:𝐶𝐷) ∧ 𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
3 ffn 5228 . . . 4 (𝐵:𝐶𝐷𝐵 Fn 𝐶)
43adantl 273 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 Fn 𝐶)
5 dffn5im 5419 . . 3 (𝐵 Fn 𝐶𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
64, 5syl 14 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
7 ffn 5228 . . . 4 (𝐴:𝐷𝐸𝐴 Fn 𝐷)
87adantr 272 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 Fn 𝐷)
9 dffn5im 5419 . . 3 (𝐴 Fn 𝐷𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
108, 9syl 14 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
11 fveq2 5373 . 2 (𝑦 = (𝐵𝑥) → (𝐴𝑦) = (𝐴‘(𝐵𝑥)))
122, 6, 10, 11fmptco 5538 1 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1312  wcel 1461  cmpt 3947  ccom 4501   Fn wfn 5074  wf 5075  cfv 5079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator