| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ffvelcdm | Unicode version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| ffvelcdm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ffn 5407 | 
. . 3
 | |
| 2 | fnfvelrn 5694 | 
. . 3
 | |
| 3 | 1, 2 | sylan 283 | 
. 2
 | 
| 4 | frn 5416 | 
. . . 4
 | |
| 5 | 4 | sseld 3182 | 
. . 3
 | 
| 6 | 5 | adantr 276 | 
. 2
 | 
| 7 | 3, 6 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 | 
| This theorem is referenced by: ffvelcdmi 5696 ffvelcdmda 5697 dffo3 5709 ffnfv 5720 ffvresb 5725 fcompt 5732 fsn2 5736 fvconst 5750 foco2 5800 fcofo 5831 cocan1 5834 isocnv 5858 isores2 5860 isopolem 5869 isosolem 5871 fovcdm 6066 off 6148 mapsncnv 6754 2dom 6864 enm 6879 xpdom2 6890 xpmapenlem 6910 fiintim 6992 isotilem 7072 updjudhf 7145 exmidomniim 7207 seqf1og 10613 shftf 10995 summodclem2a 11546 isumcl 11590 mertenslem2 11701 3dvds 12029 nn0seqcvgd 12209 algrf 12213 eucalg 12227 phimullem 12393 pcmpt 12512 pcprod 12515 imasaddfnlemg 12957 imasaddflemg 12959 mhmpropd 13098 ghmsub 13381 znunit 14215 upxp 14508 uptx 14510 txhmeo 14555 cncfmet 14828 dvaddxxbr 14937 dvcj 14945 dvfre 14946 plyf 14973 plyaddlem 14985 plymullem 14986 plycolemc 14994 plyreres 15000 dvply1 15001 lgsdir 15276 lgsdi 15278 lgseisenlem3 15313 bj-charfunr 15456 | 
| Copyright terms: Public domain | W3C validator |