| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdm | Unicode version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
| Ref | Expression |
|---|---|
| ffvelcdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5427 |
. . 3
| |
| 2 | fnfvelrn 5714 |
. . 3
| |
| 3 | 1, 2 | sylan 283 |
. 2
|
| 4 | frn 5436 |
. . . 4
| |
| 5 | 4 | sseld 3192 |
. . 3
|
| 6 | 5 | adantr 276 |
. 2
|
| 7 | 3, 6 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 |
| This theorem is referenced by: ffvelcdmi 5716 ffvelcdmda 5717 dffo3 5729 ffnfv 5740 ffvresb 5745 fcompt 5752 fsn2 5756 fvconst 5774 foco2 5824 fcofo 5855 cocan1 5858 isocnv 5882 isores2 5884 isopolem 5893 isosolem 5895 fovcdm 6091 off 6173 mapsncnv 6784 2dom 6899 enm 6917 xpdom2 6928 xpmapenlem 6948 fiintim 7030 isotilem 7110 updjudhf 7183 exmidomniim 7245 finacn 7318 seqf1og 10668 shftf 11174 summodclem2a 11725 isumcl 11769 mertenslem2 11880 3dvds 12208 nn0seqcvgd 12396 algrf 12400 eucalg 12414 phimullem 12580 pcmpt 12699 pcprod 12702 imasaddfnlemg 13179 imasaddflemg 13181 mhmpropd 13331 ghmsub 13620 znunit 14454 upxp 14777 uptx 14779 txhmeo 14824 cncfmet 15097 dvaddxxbr 15206 dvcj 15214 dvfre 15215 plyf 15242 plyaddlem 15254 plymullem 15255 plycolemc 15263 plyreres 15269 dvply1 15270 lgsdir 15545 lgsdi 15547 lgseisenlem3 15582 bj-charfunr 15783 |
| Copyright terms: Public domain | W3C validator |