ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst4m GIF version

Theorem fconst4m 5517
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
fconst4m (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fconst4m
StepHypRef Expression
1 fconst3m 5516 . 2 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
2 cnvimass 4795 . . . . . 6 (𝐹 “ {𝐵}) ⊆ dom 𝐹
3 fndm 5113 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
42, 3syl5sseq 3074 . . . . 5 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) ⊆ 𝐴)
54biantrurd 299 . . . 4 (𝐹 Fn 𝐴 → (𝐴 ⊆ (𝐹 “ {𝐵}) ↔ ((𝐹 “ {𝐵}) ⊆ 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
6 eqss 3040 . . . 4 ((𝐹 “ {𝐵}) = 𝐴 ↔ ((𝐹 “ {𝐵}) ⊆ 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
75, 6syl6bbr 196 . . 3 (𝐹 Fn 𝐴 → (𝐴 ⊆ (𝐹 “ {𝐵}) ↔ (𝐹 “ {𝐵}) = 𝐴))
87pm5.32i 442 . 2 ((𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})) ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))
91, 8syl6bb 194 1 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  wss 2999  {csn 3446  ccnv 4437  dom cdm 4438  cima 4441   Fn wfn 5010  wf 5011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fo 5021  df-fv 5023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator