![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fconst4m | GIF version |
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.) |
Ref | Expression |
---|---|
fconst4m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst3m 5778 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) | |
2 | cnvimass 5029 | . . . . . 6 ⊢ (◡𝐹 “ {𝐵}) ⊆ dom 𝐹 | |
3 | fndm 5354 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 2, 3 | sseqtrid 3230 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) ⊆ 𝐴) |
5 | 4 | biantrurd 305 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) |
6 | eqss 3195 | . . . 4 ⊢ ((◡𝐹 “ {𝐵}) = 𝐴 ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
7 | 5, 6 | bitr4di 198 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ (◡𝐹 “ {𝐵}) = 𝐴)) |
8 | 7 | pm5.32i 454 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})) ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) |
9 | 1, 8 | bitrdi 196 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ⊆ wss 3154 {csn 3619 ◡ccnv 4659 dom cdm 4660 “ cima 4663 Fn wfn 5250 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fo 5261 df-fv 5263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |