Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fconst4m | GIF version |
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.) |
Ref | Expression |
---|---|
fconst4m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst3m 5704 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) | |
2 | cnvimass 4967 | . . . . . 6 ⊢ (◡𝐹 “ {𝐵}) ⊆ dom 𝐹 | |
3 | fndm 5287 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 2, 3 | sseqtrid 3192 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) ⊆ 𝐴) |
5 | 4 | biantrurd 303 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) |
6 | eqss 3157 | . . . 4 ⊢ ((◡𝐹 “ {𝐵}) = 𝐴 ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
7 | 5, 6 | bitr4di 197 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ (◡𝐹 “ {𝐵}) = 𝐴)) |
8 | 7 | pm5.32i 450 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})) ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) |
9 | 1, 8 | bitrdi 195 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ⊆ wss 3116 {csn 3576 ◡ccnv 4603 dom cdm 4604 “ cima 4607 Fn wfn 5183 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |