Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fconst4m | GIF version |
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.) |
Ref | Expression |
---|---|
fconst4m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst3m 5715 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) | |
2 | cnvimass 4974 | . . . . . 6 ⊢ (◡𝐹 “ {𝐵}) ⊆ dom 𝐹 | |
3 | fndm 5297 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 2, 3 | sseqtrid 3197 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) ⊆ 𝐴) |
5 | 4 | biantrurd 303 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) |
6 | eqss 3162 | . . . 4 ⊢ ((◡𝐹 “ {𝐵}) = 𝐴 ↔ ((◡𝐹 “ {𝐵}) ⊆ 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
7 | 5, 6 | bitr4di 197 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐴 ⊆ (◡𝐹 “ {𝐵}) ↔ (◡𝐹 “ {𝐵}) = 𝐴)) |
8 | 7 | pm5.32i 451 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})) ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) |
9 | 1, 8 | bitrdi 195 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ⊆ wss 3121 {csn 3583 ◡ccnv 4610 dom cdm 4611 “ cima 4614 Fn wfn 5193 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |