| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneqeql2 | GIF version | ||
| Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| fneqeql2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneqeql 5711 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹 ∩ 𝐺) = 𝐴)) | |
| 2 | eqss 3216 | . . 3 ⊢ (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) | |
| 3 | inss1 3401 | . . . . . 6 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
| 4 | dmss 4896 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹 |
| 6 | fndm 5392 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom 𝐹 = 𝐴) |
| 8 | 5, 7 | sseqtrid 3251 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) ⊆ 𝐴) |
| 9 | 8 | biantrurd 305 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ⊆ dom (𝐹 ∩ 𝐺) ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺)))) |
| 10 | 2, 9 | bitr4id 199 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
| 11 | 1, 10 | bitrd 188 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∩ cin 3173 ⊆ wss 3174 dom cdm 4693 Fn wfn 5285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |