ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneqeql2 GIF version

Theorem fneqeql2 5605
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
fneqeql2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))

Proof of Theorem fneqeql2
StepHypRef Expression
1 fneqeql 5604 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))
2 eqss 3162 . . 3 (dom (𝐹𝐺) = 𝐴 ↔ (dom (𝐹𝐺) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐺)))
3 inss1 3347 . . . . . 6 (𝐹𝐺) ⊆ 𝐹
4 dmss 4810 . . . . . 6 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐹
6 fndm 5297 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76adantr 274 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom 𝐹 = 𝐴)
85, 7sseqtrid 3197 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) ⊆ 𝐴)
98biantrurd 303 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ⊆ dom (𝐹𝐺) ↔ (dom (𝐹𝐺) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐺))))
102, 9bitr4id 198 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = 𝐴𝐴 ⊆ dom (𝐹𝐺)))
111, 10bitrd 187 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  cin 3120  wss 3121  dom cdm 4611   Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator