ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneqeql2 GIF version

Theorem fneqeql2 5373
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
fneqeql2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))

Proof of Theorem fneqeql2
StepHypRef Expression
1 fneqeql 5372 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))
2 inss1 3209 . . . . . 6 (𝐹𝐺) ⊆ 𝐹
3 dmss 4605 . . . . . 6 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
42, 3ax-mp 7 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐹
5 fndm 5080 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
65adantr 270 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom 𝐹 = 𝐴)
74, 6syl5sseq 3063 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) ⊆ 𝐴)
87biantrurd 299 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ⊆ dom (𝐹𝐺) ↔ (dom (𝐹𝐺) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐺))))
9 eqss 3029 . . 3 (dom (𝐹𝐺) = 𝐴 ↔ (dom (𝐹𝐺) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐺)))
108, 9syl6rbbr 197 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = 𝐴𝐴 ⊆ dom (𝐹𝐺)))
111, 10bitrd 186 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  cin 2987  wss 2988  dom cdm 4413   Fn wfn 4978
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-mpt 3878  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-iota 4948  df-fun 4985  df-fn 4986  df-fv 4991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator