| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneqeql2 | GIF version | ||
| Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| fneqeql2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneqeql 5743 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹 ∩ 𝐺) = 𝐴)) | |
| 2 | eqss 3239 | . . 3 ⊢ (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) | |
| 3 | inss1 3424 | . . . . . 6 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
| 4 | dmss 4922 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹 |
| 6 | fndm 5420 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom 𝐹 = 𝐴) |
| 8 | 5, 7 | sseqtrid 3274 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) ⊆ 𝐴) |
| 9 | 8 | biantrurd 305 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ⊆ dom (𝐹 ∩ 𝐺) ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺)))) |
| 10 | 2, 9 | bitr4id 199 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
| 11 | 1, 10 | bitrd 188 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∩ cin 3196 ⊆ wss 3197 dom cdm 4719 Fn wfn 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |