ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmeng Unicode version

Theorem fndmeng 6904
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 5808 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  F  e.  _V )
2 fnfun 5372 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
32adantr 276 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  Fun  F )
4 fundmeng 6901 . . 3  |-  ( ( F  e.  _V  /\  Fun  F )  ->  dom  F 
~~  F )
51, 3, 4syl2anc 411 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  dom  F  ~~  F
)
6 fndm 5374 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
76breq1d 4055 . . 3  |-  ( F  Fn  A  ->  ( dom  F  ~~  F  <->  A  ~~  F ) )
87adantr 276 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  ( dom  F  ~~  F 
<->  A  ~~  F ) )
95, 8mpbid 147 1  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   _Vcvv 2772   class class class wbr 4045   dom cdm 4676   Fun wfun 5266    Fn wfn 5267    ~~ cen 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-en 6830
This theorem is referenced by:  fihashfn  10947
  Copyright terms: Public domain W3C validator