ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmeng Unicode version

Theorem fndmeng 6824
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 5751 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  F  e.  _V )
2 fnfun 5325 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
32adantr 276 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  Fun  F )
4 fundmeng 6821 . . 3  |-  ( ( F  e.  _V  /\  Fun  F )  ->  dom  F 
~~  F )
51, 3, 4syl2anc 411 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  dom  F  ~~  F
)
6 fndm 5327 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
76breq1d 4025 . . 3  |-  ( F  Fn  A  ->  ( dom  F  ~~  F  <->  A  ~~  F ) )
87adantr 276 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  ( dom  F  ~~  F 
<->  A  ~~  F ) )
95, 8mpbid 147 1  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2158   _Vcvv 2749   class class class wbr 4015   dom cdm 4638   Fun wfun 5222    Fn wfn 5223    ~~ cen 6752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-en 6755
This theorem is referenced by:  fihashfn  10794
  Copyright terms: Public domain W3C validator