ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmeng Unicode version

Theorem fndmeng 6866
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 5781 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  F  e.  _V )
2 fnfun 5352 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
32adantr 276 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  Fun  F )
4 fundmeng 6863 . . 3  |-  ( ( F  e.  _V  /\  Fun  F )  ->  dom  F 
~~  F )
51, 3, 4syl2anc 411 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  dom  F  ~~  F
)
6 fndm 5354 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
76breq1d 4040 . . 3  |-  ( F  Fn  A  ->  ( dom  F  ~~  F  <->  A  ~~  F ) )
87adantr 276 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  ( dom  F  ~~  F 
<->  A  ~~  F ) )
95, 8mpbid 147 1  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   _Vcvv 2760   class class class wbr 4030   dom cdm 4660   Fun wfun 5249    Fn wfn 5250    ~~ cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-en 6797
This theorem is referenced by:  fihashfn  10874
  Copyright terms: Public domain W3C validator