ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmeng Unicode version

Theorem fndmeng 6926
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 5829 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  F  e.  _V )
2 fnfun 5390 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
32adantr 276 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  Fun  F )
4 fundmeng 6923 . . 3  |-  ( ( F  e.  _V  /\  Fun  F )  ->  dom  F 
~~  F )
51, 3, 4syl2anc 411 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  dom  F  ~~  F
)
6 fndm 5392 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
76breq1d 4069 . . 3  |-  ( F  Fn  A  ->  ( dom  F  ~~  F  <->  A  ~~  F ) )
87adantr 276 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  ( dom  F  ~~  F 
<->  A  ~~  F ) )
95, 8mpbid 147 1  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178   _Vcvv 2776   class class class wbr 4059   dom cdm 4693   Fun wfun 5284    Fn wfn 5285    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-en 6851
This theorem is referenced by:  fihashfn  10982
  Copyright terms: Public domain W3C validator