Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniunfv GIF version

Theorem fniunfv 5663
 Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
Assertion
Ref Expression
fniunfv (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem fniunfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funfvex 5438 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
21funfni 5223 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
32ralrimiva 2505 . . 3 (𝐹 Fn 𝐴 → ∀𝑥𝐴 (𝐹𝑥) ∈ V)
4 dfiun2g 3845 . . 3 (∀𝑥𝐴 (𝐹𝑥) ∈ V → 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
53, 4syl 14 . 2 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
6 fnrnfv 5468 . . 3 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
76unieqd 3747 . 2 (𝐹 Fn 𝐴 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
85, 7eqtr4d 2175 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1331   ∈ wcel 1480  {cab 2125  ∀wral 2416  ∃wrex 2417  Vcvv 2686  ∪ cuni 3736  ∪ ciun 3813  ran crn 4540   Fn wfn 5118  ‘cfv 5123 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131 This theorem is referenced by:  funiunfvdm  5664  ennnfonelemfun  11937  ennnfonelemf1  11938
 Copyright terms: Public domain W3C validator