ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrfun Unicode version

Theorem tfrfun 6408
Description: Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.)
Assertion
Ref Expression
tfrfun  |-  Fun recs ( F )

Proof of Theorem tfrfun
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . 2  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
21tfrlem7 6405 1  |-  Fun recs ( F )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   {cab 2191   A.wral 2484   E.wrex 2485   Oncon0 4411    |` cres 4678   Fun wfun 5266    Fn wfn 5267   ` cfv 5272  recscrecs 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-recs 6393
This theorem is referenced by:  tfr1onlembfn  6432  tfr1onlemubacc  6434  tfri1dALT  6439  tfrcllembfn  6445  tfrcllemubacc  6447  tfrcl  6452  frecex  6482  frecfun  6483  frecfcllem  6492  frecsuclem  6494
  Copyright terms: Public domain W3C validator