ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun GIF version

Theorem fun 5360
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fun (((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))

Proof of Theorem fun
StepHypRef Expression
1 fnun 5294 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
21expcom 115 . . . 4 ((𝐴𝐵) = ∅ → ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹𝐺) Fn (𝐴𝐵)))
3 rnun 5012 . . . . . 6 ran (𝐹𝐺) = (ran 𝐹 ∪ ran 𝐺)
4 unss12 3294 . . . . . 6 ((ran 𝐹𝐶 ∧ ran 𝐺𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐶𝐷))
53, 4eqsstrid 3188 . . . . 5 ((ran 𝐹𝐶 ∧ ran 𝐺𝐷) → ran (𝐹𝐺) ⊆ (𝐶𝐷))
65a1i 9 . . . 4 ((𝐴𝐵) = ∅ → ((ran 𝐹𝐶 ∧ ran 𝐺𝐷) → ran (𝐹𝐺) ⊆ (𝐶𝐷)))
72, 6anim12d 333 . . 3 ((𝐴𝐵) = ∅ → (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (ran 𝐹𝐶 ∧ ran 𝐺𝐷)) → ((𝐹𝐺) Fn (𝐴𝐵) ∧ ran (𝐹𝐺) ⊆ (𝐶𝐷))))
8 df-f 5192 . . . . 5 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
9 df-f 5192 . . . . 5 (𝐺:𝐵𝐷 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐷))
108, 9anbi12i 456 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐷) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐷)))
11 an4 576 . . . 4 (((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐷)) ↔ ((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (ran 𝐹𝐶 ∧ ran 𝐺𝐷)))
1210, 11bitri 183 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐷) ↔ ((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (ran 𝐹𝐶 ∧ ran 𝐺𝐷)))
13 df-f 5192 . . 3 ((𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐵) ∧ ran (𝐹𝐺) ⊆ (𝐶𝐷)))
147, 12, 133imtr4g 204 . 2 ((𝐴𝐵) = ∅ → ((𝐹:𝐴𝐶𝐺:𝐵𝐷) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷)))
1514impcom 124 1 (((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  cun 3114  cin 3115  wss 3116  c0 3409  ran crn 4605   Fn wfn 5183  wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  fun2  5361  ftpg  5669  fsnunf  5685
  Copyright terms: Public domain W3C validator