| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fun | GIF version | ||
| Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.) |
| Ref | Expression |
|---|---|
| fun | ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnun 5376 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) | |
| 2 | 1 | expcom 116 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵))) |
| 3 | rnun 5088 | . . . . . 6 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
| 4 | unss12 3344 | . . . . . 6 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐶 ∪ 𝐷)) | |
| 5 | 3, 4 | eqsstrid 3238 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)) |
| 6 | 5 | a1i 9 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷) → ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷))) |
| 7 | 2, 6 | anim12d 335 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷)) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷)))) |
| 8 | df-f 5272 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 9 | df-f 5272 | . . . . 5 ⊢ (𝐺:𝐵⟶𝐷 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) | |
| 10 | 8, 9 | anbi12i 460 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷))) |
| 11 | an4 586 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐷)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) | |
| 12 | 10, 11 | bitri 184 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ↔ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (ran 𝐹 ⊆ 𝐶 ∧ ran 𝐺 ⊆ 𝐷))) |
| 13 | df-f 5272 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) ∧ ran (𝐹 ∪ 𝐺) ⊆ (𝐶 ∪ 𝐷))) | |
| 14 | 7, 12, 13 | 3imtr4g 205 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷))) |
| 15 | 14 | impcom 125 | 1 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐷) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∪ cun 3163 ∩ cin 3164 ⊆ wss 3165 ∅c0 3459 ran crn 4674 Fn wfn 5263 ⟶wf 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4338 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-fun 5270 df-fn 5271 df-f 5272 |
| This theorem is referenced by: fun2 5443 ftpg 5758 fsnunf 5774 |
| Copyright terms: Public domain | W3C validator |