ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun GIF version

Theorem fun 5168
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fun (((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))

Proof of Theorem fun
StepHypRef Expression
1 fnun 5106 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
21expcom 114 . . . 4 ((𝐴𝐵) = ∅ → ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹𝐺) Fn (𝐴𝐵)))
3 rnun 4827 . . . . . 6 ran (𝐹𝐺) = (ran 𝐹 ∪ ran 𝐺)
4 unss12 3170 . . . . . 6 ((ran 𝐹𝐶 ∧ ran 𝐺𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐶𝐷))
53, 4syl5eqss 3068 . . . . 5 ((ran 𝐹𝐶 ∧ ran 𝐺𝐷) → ran (𝐹𝐺) ⊆ (𝐶𝐷))
65a1i 9 . . . 4 ((𝐴𝐵) = ∅ → ((ran 𝐹𝐶 ∧ ran 𝐺𝐷) → ran (𝐹𝐺) ⊆ (𝐶𝐷)))
72, 6anim12d 328 . . 3 ((𝐴𝐵) = ∅ → (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (ran 𝐹𝐶 ∧ ran 𝐺𝐷)) → ((𝐹𝐺) Fn (𝐴𝐵) ∧ ran (𝐹𝐺) ⊆ (𝐶𝐷))))
8 df-f 5006 . . . . 5 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
9 df-f 5006 . . . . 5 (𝐺:𝐵𝐷 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐷))
108, 9anbi12i 448 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐷) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐷)))
11 an4 553 . . . 4 (((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐷)) ↔ ((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (ran 𝐹𝐶 ∧ ran 𝐺𝐷)))
1210, 11bitri 182 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐷) ↔ ((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (ran 𝐹𝐶 ∧ ran 𝐺𝐷)))
13 df-f 5006 . . 3 ((𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐵) ∧ ran (𝐹𝐺) ⊆ (𝐶𝐷)))
147, 12, 133imtr4g 203 . 2 ((𝐴𝐵) = ∅ → ((𝐹:𝐴𝐶𝐺:𝐵𝐷) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷)))
1514impcom 123 1 (((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  cun 2995  cin 2996  wss 2997  c0 3284  ran crn 4429   Fn wfn 4997  wf 4998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-fun 5004  df-fn 5005  df-f 5006
This theorem is referenced by:  fun2  5169  ftpg  5465  fsnunf  5480
  Copyright terms: Public domain W3C validator