![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funoprabg | GIF version |
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.) |
Ref | Expression |
---|---|
funoprabg | ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mosubopt 4706 | . . 3 ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → ∃*𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
2 | 1 | alrimiv 1885 | . 2 ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → ∀𝑤∃*𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
3 | dfoprab2 5938 | . . . 4 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
4 | 3 | funeqi 5252 | . . 3 ⊢ (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ Fun {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}) |
5 | funopab 5266 | . . 3 ⊢ (Fun {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↔ ∀𝑤∃*𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
6 | 4, 5 | bitr2i 185 | . 2 ⊢ (∀𝑤∃*𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) |
7 | 2, 6 | sylib 122 | 1 ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1503 ∃*wmo 2039 ⟨cop 3610 {copab 4078 Fun wfun 5225 {coprab 5892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-fun 5233 df-oprab 5895 |
This theorem is referenced by: funoprab 5991 fnoprabg 5992 oprabexd 6146 |
Copyright terms: Public domain | W3C validator |