ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funoprabg GIF version

Theorem funoprabg 6021
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
funoprabg (∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem funoprabg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mosubopt 4728 . . 3 (∀𝑥𝑦∃*𝑧𝜑 → ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
21alrimiv 1888 . 2 (∀𝑥𝑦∃*𝑧𝜑 → ∀𝑤∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 dfoprab2 5969 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
43funeqi 5279 . . 3 (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ Fun {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)})
5 funopab 5293 . . 3 (Fun {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↔ ∀𝑤∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
64, 5bitr2i 185 . 2 (∀𝑤∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
72, 6sylib 122 1 (∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wex 1506  ∃*wmo 2046  cop 3625  {copab 4093  Fun wfun 5252  {coprab 5923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-fun 5260  df-oprab 5926
This theorem is referenced by:  funoprab  6022  fnoprabg  6023  oprabexd  6184
  Copyright terms: Public domain W3C validator