ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funrnfi Unicode version

Theorem funrnfi 6838
Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
funrnfi  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  ran  A  e.  Fin )

Proof of Theorem funrnfi
StepHypRef Expression
1 df-rn 4558 . 2  |-  ran  A  =  dom  `' A
2 relcnvfi 6837 . . . 4  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
323adant2 1001 . . 3  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  `' A  e.  Fin )
4 simp2 983 . . 3  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  Fun  `' A )
5 fundmfi 6834 . . 3  |-  ( ( `' A  e.  Fin  /\ 
Fun  `' A )  ->  dom  `' A  e.  Fin )
63, 4, 5syl2anc 409 . 2  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  dom  `' A  e.  Fin )
71, 6eqeltrid 2227 1  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  ran  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 963    e. wcel 1481   `'ccnv 4546   dom cdm 4547   ran crn 4548   Rel wrel 4552   Fun wfun 5125   Fincfn 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-er 6437  df-en 6643  df-fin 6645
This theorem is referenced by:  f1dmvrnfibi  6840
  Copyright terms: Public domain W3C validator