ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funrnfi Unicode version

Theorem funrnfi 6943
Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
funrnfi  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  ran  A  e.  Fin )

Proof of Theorem funrnfi
StepHypRef Expression
1 df-rn 4639 . 2  |-  ran  A  =  dom  `' A
2 relcnvfi 6942 . . . 4  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
323adant2 1016 . . 3  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  `' A  e.  Fin )
4 simp2 998 . . 3  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  Fun  `' A )
5 fundmfi 6939 . . 3  |-  ( ( `' A  e.  Fin  /\ 
Fun  `' A )  ->  dom  `' A  e.  Fin )
63, 4, 5syl2anc 411 . 2  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  dom  `' A  e.  Fin )
71, 6eqeltrid 2264 1  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  ran  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    e. wcel 2148   `'ccnv 4627   dom cdm 4628   ran crn 4629   Rel wrel 4633   Fun wfun 5212   Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-er 6537  df-en 6743  df-fin 6745
This theorem is referenced by:  f1dmvrnfibi  6945
  Copyright terms: Public domain W3C validator