ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funrnfi Unicode version

Theorem funrnfi 6705
Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
funrnfi  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  ran  A  e.  Fin )

Proof of Theorem funrnfi
StepHypRef Expression
1 df-rn 4462 . 2  |-  ran  A  =  dom  `' A
2 relcnvfi 6704 . . . 4  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
323adant2 963 . . 3  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  `' A  e.  Fin )
4 simp2 945 . . 3  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  Fun  `' A )
5 fundmfi 6701 . . 3  |-  ( ( `' A  e.  Fin  /\ 
Fun  `' A )  ->  dom  `' A  e.  Fin )
63, 4, 5syl2anc 404 . 2  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  dom  `' A  e.  Fin )
71, 6syl5eqel 2175 1  |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e. 
Fin )  ->  ran  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 925    e. wcel 1439   `'ccnv 4450   dom cdm 4451   ran crn 4452   Rel wrel 4456   Fun wfun 5022   Fincfn 6511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-1st 5925  df-2nd 5926  df-er 6306  df-en 6512  df-fin 6514
This theorem is referenced by:  f1dmvrnfibi  6707
  Copyright terms: Public domain W3C validator