ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvfi Unicode version

Theorem relcnvfi 6954
Description: If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
relcnvfi  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )

Proof of Theorem relcnvfi
StepHypRef Expression
1 dfrel2 5091 . . . . 5  |-  ( Rel 
A  <->  `' `' A  =  A
)
21biimpi 120 . . . 4  |-  ( Rel 
A  ->  `' `' A  =  A )
32adantr 276 . . 3  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' `' A  =  A
)
4 simpr 110 . . 3  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  A  e.  Fin )
53, 4eqeltrd 2264 . 2  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' `' A  e.  Fin )
6 relcnv 5018 . . . 4  |-  Rel  `' A
7 cnvexg 5178 . . . 4  |-  ( A  e.  Fin  ->  `' A  e.  _V )
8 cnven 6822 . . . 4  |-  ( ( Rel  `' A  /\  `' A  e.  _V )  ->  `' A  ~~  `' `' A )
96, 7, 8sylancr 414 . . 3  |-  ( A  e.  Fin  ->  `' A  ~~  `' `' A
)
109adantl 277 . 2  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  ~~  `' `' A
)
11 enfii 6888 . 2  |-  ( ( `' `' A  e.  Fin  /\  `' A  ~~  `' `' A )  ->  `' A  e.  Fin )
125, 10, 11syl2anc 411 1  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   _Vcvv 2749   class class class wbr 4015   `'ccnv 4637   Rel wrel 4643    ~~ cen 6752   Fincfn 6754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1st 6155  df-2nd 6156  df-er 6549  df-en 6755  df-fin 6757
This theorem is referenced by:  funrnfi  6955  fsumcnv  11459  fprodcnv  11647
  Copyright terms: Public domain W3C validator