ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvfi Unicode version

Theorem relcnvfi 6837
Description: If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
relcnvfi  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )

Proof of Theorem relcnvfi
StepHypRef Expression
1 dfrel2 4997 . . . . 5  |-  ( Rel 
A  <->  `' `' A  =  A
)
21biimpi 119 . . . 4  |-  ( Rel 
A  ->  `' `' A  =  A )
32adantr 274 . . 3  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' `' A  =  A
)
4 simpr 109 . . 3  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  A  e.  Fin )
53, 4eqeltrd 2217 . 2  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' `' A  e.  Fin )
6 relcnv 4925 . . . 4  |-  Rel  `' A
7 cnvexg 5084 . . . 4  |-  ( A  e.  Fin  ->  `' A  e.  _V )
8 cnven 6710 . . . 4  |-  ( ( Rel  `' A  /\  `' A  e.  _V )  ->  `' A  ~~  `' `' A )
96, 7, 8sylancr 411 . . 3  |-  ( A  e.  Fin  ->  `' A  ~~  `' `' A
)
109adantl 275 . 2  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  ~~  `' `' A
)
11 enfii 6776 . 2  |-  ( ( `' `' A  e.  Fin  /\  `' A  ~~  `' `' A )  ->  `' A  e.  Fin )
125, 10, 11syl2anc 409 1  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   _Vcvv 2689   class class class wbr 3937   `'ccnv 4546   Rel wrel 4552    ~~ cen 6640   Fincfn 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-er 6437  df-en 6643  df-fin 6645
This theorem is referenced by:  funrnfi  6838  fsumcnv  11238
  Copyright terms: Public domain W3C validator