Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funrnfi | GIF version |
Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.) |
Ref | Expression |
---|---|
funrnfi | ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4631 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | relcnvfi 6930 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) | |
3 | 2 | 3adant2 1016 | . . 3 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
4 | simp2 998 | . . 3 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → Fun ◡𝐴) | |
5 | fundmfi 6927 | . . 3 ⊢ ((◡𝐴 ∈ Fin ∧ Fun ◡𝐴) → dom ◡𝐴 ∈ Fin) | |
6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → dom ◡𝐴 ∈ Fin) |
7 | 1, 6 | eqeltrid 2262 | 1 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 ∈ wcel 2146 ◡ccnv 4619 dom cdm 4620 ran crn 4621 Rel wrel 4625 Fun wfun 5202 Fincfn 6730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-1st 6131 df-2nd 6132 df-er 6525 df-en 6731 df-fin 6733 |
This theorem is referenced by: f1dmvrnfibi 6933 |
Copyright terms: Public domain | W3C validator |