| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funrnfi | GIF version | ||
| Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| funrnfi | ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 4729 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | relcnvfi 7104 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) | |
| 3 | 2 | 3adant2 1040 | . . 3 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
| 4 | simp2 1022 | . . 3 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → Fun ◡𝐴) | |
| 5 | fundmfi 7100 | . . 3 ⊢ ((◡𝐴 ∈ Fin ∧ Fun ◡𝐴) → dom ◡𝐴 ∈ Fin) | |
| 6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → dom ◡𝐴 ∈ Fin) |
| 7 | 1, 6 | eqeltrid 2316 | 1 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 ∈ wcel 2200 ◡ccnv 4717 dom cdm 4718 ran crn 4719 Rel wrel 4723 Fun wfun 5311 Fincfn 6885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1st 6284 df-2nd 6285 df-er 6678 df-en 6886 df-fin 6888 |
| This theorem is referenced by: f1dmvrnfibi 7107 4sqlemffi 12914 |
| Copyright terms: Public domain | W3C validator |