ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funrnfi GIF version

Theorem funrnfi 7059
Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
funrnfi ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)

Proof of Theorem funrnfi
StepHypRef Expression
1 df-rn 4694 . 2 ran 𝐴 = dom 𝐴
2 relcnvfi 7058 . . . 4 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
323adant2 1019 . . 3 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
4 simp2 1001 . . 3 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → Fun 𝐴)
5 fundmfi 7054 . . 3 ((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin)
63, 4, 5syl2anc 411 . 2 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → dom 𝐴 ∈ Fin)
71, 6eqeltrid 2293 1 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981  wcel 2177  ccnv 4682  dom cdm 4683  ran crn 4684  Rel wrel 4688  Fun wfun 5274  Fincfn 6840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1st 6239  df-2nd 6240  df-er 6633  df-en 6841  df-fin 6843
This theorem is referenced by:  f1dmvrnfibi  7061  4sqlemffi  12794
  Copyright terms: Public domain W3C validator