ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funrnfi GIF version

Theorem funrnfi 7017
Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
funrnfi ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)

Proof of Theorem funrnfi
StepHypRef Expression
1 df-rn 4675 . 2 ran 𝐴 = dom 𝐴
2 relcnvfi 7016 . . . 4 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
323adant2 1018 . . 3 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
4 simp2 1000 . . 3 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → Fun 𝐴)
5 fundmfi 7012 . . 3 ((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin)
63, 4, 5syl2anc 411 . 2 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → dom 𝐴 ∈ Fin)
71, 6eqeltrid 2283 1 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2167  ccnv 4663  dom cdm 4664  ran crn 4665  Rel wrel 4669  Fun wfun 5253  Fincfn 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-er 6601  df-en 6809  df-fin 6811
This theorem is referenced by:  f1dmvrnfibi  7019  4sqlemffi  12590
  Copyright terms: Public domain W3C validator