![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funrnfi | GIF version |
Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.) |
Ref | Expression |
---|---|
funrnfi | ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4478 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | relcnvfi 6730 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) | |
3 | 2 | 3adant2 965 | . . 3 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
4 | simp2 947 | . . 3 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → Fun ◡𝐴) | |
5 | fundmfi 6727 | . . 3 ⊢ ((◡𝐴 ∈ Fin ∧ Fun ◡𝐴) → dom ◡𝐴 ∈ Fin) | |
6 | 3, 4, 5 | syl2anc 404 | . 2 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → dom ◡𝐴 ∈ Fin) |
7 | 1, 6 | syl5eqel 2181 | 1 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 927 ∈ wcel 1445 ◡ccnv 4466 dom cdm 4467 ran crn 4468 Rel wrel 4472 Fun wfun 5043 Fincfn 6537 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-1st 5949 df-2nd 5950 df-er 6332 df-en 6538 df-fin 6540 |
This theorem is referenced by: f1dmvrnfibi 6733 |
Copyright terms: Public domain | W3C validator |