| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funrnfi | GIF version | ||
| Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| funrnfi | ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 4694 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | relcnvfi 7058 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) | |
| 3 | 2 | 3adant2 1019 | . . 3 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
| 4 | simp2 1001 | . . 3 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → Fun ◡𝐴) | |
| 5 | fundmfi 7054 | . . 3 ⊢ ((◡𝐴 ∈ Fin ∧ Fun ◡𝐴) → dom ◡𝐴 ∈ Fin) | |
| 6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → dom ◡𝐴 ∈ Fin) |
| 7 | 1, 6 | eqeltrid 2293 | 1 ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 ∈ wcel 2177 ◡ccnv 4682 dom cdm 4683 ran crn 4684 Rel wrel 4688 Fun wfun 5274 Fincfn 6840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1st 6239 df-2nd 6240 df-er 6633 df-en 6841 df-fin 6843 |
| This theorem is referenced by: f1dmvrnfibi 7061 4sqlemffi 12794 |
| Copyright terms: Public domain | W3C validator |