ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funrnfi GIF version

Theorem funrnfi 7001
Description: The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
funrnfi ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)

Proof of Theorem funrnfi
StepHypRef Expression
1 df-rn 4670 . 2 ran 𝐴 = dom 𝐴
2 relcnvfi 7000 . . . 4 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
323adant2 1018 . . 3 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
4 simp2 1000 . . 3 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → Fun 𝐴)
5 fundmfi 6996 . . 3 ((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin)
63, 4, 5syl2anc 411 . 2 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → dom 𝐴 ∈ Fin)
71, 6eqeltrid 2280 1 ((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2164  ccnv 4658  dom cdm 4659  ran crn 4660  Rel wrel 4664  Fun wfun 5248  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by:  f1dmvrnfibi  7003  4sqlemffi  12534
  Copyright terms: Public domain W3C validator