ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofi Unicode version

Theorem f1ofi 7106
Description: If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
f1ofi  |-  ( ( A  e.  Fin  /\  F : A -1-1-onto-> B )  ->  B  e.  Fin )

Proof of Theorem f1ofi
StepHypRef Expression
1 f1oeng 6906 . . 3  |-  ( ( A  e.  Fin  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
21ensymd 6933 . 2  |-  ( ( A  e.  Fin  /\  F : A -1-1-onto-> B )  ->  B  ~~  A )
3 enfii 7032 . 2  |-  ( ( A  e.  Fin  /\  B  ~~  A )  ->  B  e.  Fin )
42, 3syldan 282 1  |-  ( ( A  e.  Fin  /\  F : A -1-1-onto-> B )  ->  B  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   class class class wbr 4082   -1-1-onto->wf1o 5316    ~~ cen 6883   Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  preimaf1ofi  7114  fiinfnf1o  11003  fihasheqf1oi  11004
  Copyright terms: Public domain W3C validator