| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvmptdv2 | GIF version | ||
| Description: Alternate deduction version of fvmpt 5638, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| fvmptdv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) | 
| fvmptdv2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | 
| fvmptdv2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| fvmptdv2 | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd 2197 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
| 2 | fvmptdv2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 3 | fvmptdv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 4 | elex 2774 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ V) | |
| 5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) | 
| 6 | isset 2769 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 7 | 5, 6 | sylib 122 | . . . 4 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) | 
| 8 | fvmptdv2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
| 9 | elex 2774 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 10 | 8, 9 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) | 
| 11 | 2, 10 | eqeltrrd 2274 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 ∈ V) | 
| 12 | 7, 11 | exlimddv 1913 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | 
| 13 | 1, 2, 3, 12 | fvmptd 5642 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶) | 
| 14 | fveq1 5557 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) | |
| 15 | 14 | eqeq1d 2205 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → ((𝐹‘𝐴) = 𝐶 ↔ ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶)) | 
| 16 | 13, 15 | syl5ibrcom 157 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4094 ‘cfv 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |