ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdv2 GIF version

Theorem fvmptdv2 5585
Description: Alternate deduction version of fvmpt 5573, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdv2.1 (𝜑𝐴𝐷)
fvmptdv2.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptdv2.3 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
fvmptdv2 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptdv2
StepHypRef Expression
1 eqidd 2171 . . 3 (𝜑 → (𝑥𝐷𝐵) = (𝑥𝐷𝐵))
2 fvmptdv2.3 . . 3 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
3 fvmptdv2.1 . . 3 (𝜑𝐴𝐷)
4 elex 2741 . . . . . 6 (𝐴𝐷𝐴 ∈ V)
53, 4syl 14 . . . . 5 (𝜑𝐴 ∈ V)
6 isset 2736 . . . . 5 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
75, 6sylib 121 . . . 4 (𝜑 → ∃𝑥 𝑥 = 𝐴)
8 fvmptdv2.2 . . . . . 6 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
9 elex 2741 . . . . . 6 (𝐵𝑉𝐵 ∈ V)
108, 9syl 14 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵 ∈ V)
112, 10eqeltrrd 2248 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐶 ∈ V)
127, 11exlimddv 1891 . . 3 (𝜑𝐶 ∈ V)
131, 2, 3, 12fvmptd 5577 . 2 (𝜑 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
14 fveq1 5495 . . 3 (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
1514eqeq1d 2179 . 2 (𝐹 = (𝑥𝐷𝐵) → ((𝐹𝐴) = 𝐶 ↔ ((𝑥𝐷𝐵)‘𝐴) = 𝐶))
1613, 15syl5ibrcom 156 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730  cmpt 4050  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator