ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdv2 GIF version

Theorem fvmptdv2 5575
Description: Alternate deduction version of fvmpt 5563, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdv2.1 (𝜑𝐴𝐷)
fvmptdv2.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptdv2.3 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
fvmptdv2 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptdv2
StepHypRef Expression
1 eqidd 2166 . . 3 (𝜑 → (𝑥𝐷𝐵) = (𝑥𝐷𝐵))
2 fvmptdv2.3 . . 3 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
3 fvmptdv2.1 . . 3 (𝜑𝐴𝐷)
4 elex 2737 . . . . . 6 (𝐴𝐷𝐴 ∈ V)
53, 4syl 14 . . . . 5 (𝜑𝐴 ∈ V)
6 isset 2732 . . . . 5 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
75, 6sylib 121 . . . 4 (𝜑 → ∃𝑥 𝑥 = 𝐴)
8 fvmptdv2.2 . . . . . 6 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
9 elex 2737 . . . . . 6 (𝐵𝑉𝐵 ∈ V)
108, 9syl 14 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵 ∈ V)
112, 10eqeltrrd 2244 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐶 ∈ V)
127, 11exlimddv 1886 . . 3 (𝜑𝐶 ∈ V)
131, 2, 3, 12fvmptd 5567 . 2 (𝜑 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
14 fveq1 5485 . . 3 (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
1514eqeq1d 2174 . 2 (𝐹 = (𝑥𝐷𝐵) → ((𝐹𝐴) = 𝐶 ↔ ((𝑥𝐷𝐵)‘𝐴) = 𝐶))
1613, 15syl5ibrcom 156 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  cmpt 4043  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator