ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr2g Unicode version

Theorem fvpr2g 5790
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr2g  |-  ( ( B  e.  V  /\  D  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  B
)  =  D )

Proof of Theorem fvpr2g
StepHypRef Expression
1 prcom 3708 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  { <. B ,  D >. ,  <. A ,  C >. }
2 df-pr 3639 . . . . . 6  |-  { <. B ,  D >. ,  <. A ,  C >. }  =  ( { <. B ,  D >. }  u.  { <. A ,  C >. } )
31, 2eqtri 2225 . . . . 5  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. B ,  D >. }  u.  { <. A ,  C >. } )
43fveq1i 5576 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 B )  =  ( ( { <. B ,  D >. }  u.  {
<. A ,  C >. } ) `  B )
5 fvunsng 5777 . . . 4  |-  ( ( B  e.  V  /\  A  =/=  B )  -> 
( ( { <. B ,  D >. }  u.  {
<. A ,  C >. } ) `  B )  =  ( { <. B ,  D >. } `  B ) )
64, 5eqtrid 2249 . . 3  |-  ( ( B  e.  V  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  B
)  =  ( {
<. B ,  D >. } `
 B ) )
763adant2 1018 . 2  |-  ( ( B  e.  V  /\  D  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  B
)  =  ( {
<. B ,  D >. } `
 B ) )
8 fvsng 5779 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ( { <. B ,  D >. } `  B
)  =  D )
983adant3 1019 . 2  |-  ( ( B  e.  V  /\  D  e.  W  /\  A  =/=  B )  -> 
( { <. B ,  D >. } `  B
)  =  D )
107, 9eqtrd 2237 1  |-  ( ( B  e.  V  /\  D  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  B
)  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375    u. cun 3163   {csn 3632   {cpr 3633   <.cop 3635   ` cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278
This theorem is referenced by:  fvpr1o  13145
  Copyright terms: Public domain W3C validator