ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr2g GIF version

Theorem fvpr2g 5593
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr2g ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2g
StepHypRef Expression
1 prcom 3567 . . . . . 6 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}
2 df-pr 3502 . . . . . 6 {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩} = ({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})
31, 2eqtri 2136 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})
43fveq1i 5388 . . . 4 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = (({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})‘𝐵)
5 fvunsng 5580 . . . 4 ((𝐵𝑉𝐴𝐵) → (({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
64, 5syl5eq 2160 . . 3 ((𝐵𝑉𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
763adant2 983 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
8 fvsng 5582 . . 3 ((𝐵𝑉𝐷𝑊) → ({⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
983adant3 984 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
107, 9eqtrd 2148 1 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945   = wceq 1314  wcel 1463  wne 2283  cun 3037  {csn 3495  {cpr 3496  cop 3498  cfv 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-res 4519  df-iota 5056  df-fun 5093  df-fv 5099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator