![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvpr2g | GIF version |
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
Ref | Expression |
---|---|
fvpr2g | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 3518 | . . . . . 6 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉} | |
2 | df-pr 3453 | . . . . . 6 ⊢ {〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉} = ({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉}) | |
3 | 1, 2 | eqtri 2108 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉}) |
4 | 3 | fveq1i 5306 | . . . 4 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = (({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉})‘𝐵) |
5 | fvunsng 5491 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉})‘𝐵) = ({〈𝐵, 𝐷〉}‘𝐵)) | |
6 | 4, 5 | syl5eq 2132 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = ({〈𝐵, 𝐷〉}‘𝐵)) |
7 | 6 | 3adant2 962 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = ({〈𝐵, 𝐷〉}‘𝐵)) |
8 | fvsng 5493 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ({〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | |
9 | 8 | 3adant3 963 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
10 | 7, 9 | eqtrd 2120 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 924 = wceq 1289 ∈ wcel 1438 ≠ wne 2255 ∪ cun 2997 {csn 3446 {cpr 3447 〈cop 3449 ‘cfv 5015 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-res 4450 df-iota 4980 df-fun 5017 df-fv 5023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |