ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr2g GIF version

Theorem fvpr2g 5627
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr2g ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2g
StepHypRef Expression
1 prcom 3599 . . . . . 6 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}
2 df-pr 3534 . . . . . 6 {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩} = ({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})
31, 2eqtri 2160 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})
43fveq1i 5422 . . . 4 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = (({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})‘𝐵)
5 fvunsng 5614 . . . 4 ((𝐵𝑉𝐴𝐵) → (({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
64, 5syl5eq 2184 . . 3 ((𝐵𝑉𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
763adant2 1000 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
8 fvsng 5616 . . 3 ((𝐵𝑉𝐷𝑊) → ({⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
983adant3 1001 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
107, 9eqtrd 2172 1 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wne 2308  cun 3069  {csn 3527  {cpr 3528  cop 3530  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator