ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvun2 Unicode version

Theorem fvun2 5700
Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( F  u.  G ) `  X
)  =  ( G `
 X ) )

Proof of Theorem fvun2
StepHypRef Expression
1 uncom 3348 . . 3  |-  ( F  u.  G )  =  ( G  u.  F
)
21fveq1i 5627 . 2  |-  ( ( F  u.  G ) `
 X )  =  ( ( G  u.  F ) `  X
)
3 incom 3396 . . . . . 6  |-  ( A  i^i  B )  =  ( B  i^i  A
)
43eqeq1i 2237 . . . . 5  |-  ( ( A  i^i  B )  =  (/)  <->  ( B  i^i  A )  =  (/) )
54anbi1i 458 . . . 4  |-  ( ( ( A  i^i  B
)  =  (/)  /\  X  e.  B )  <->  ( ( B  i^i  A )  =  (/)  /\  X  e.  B
) )
6 fvun1 5699 . . . 4  |-  ( ( G  Fn  B  /\  F  Fn  A  /\  ( ( B  i^i  A )  =  (/)  /\  X  e.  B ) )  -> 
( ( G  u.  F ) `  X
)  =  ( G `
 X ) )
75, 6syl3an3b 1309 . . 3  |-  ( ( G  Fn  B  /\  F  Fn  A  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( G  u.  F ) `  X
)  =  ( G `
 X ) )
873com12 1231 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( G  u.  F ) `  X
)  =  ( G `
 X ) )
92, 8eqtrid 2274 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( F  u.  G ) `  X
)  =  ( G `
 X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    u. cun 3195    i^i cin 3196   (/)c0 3491    Fn wfn 5312   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by:  caseinr  7255
  Copyright terms: Public domain W3C validator