ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvun2 Unicode version

Theorem fvun2 5585
Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( F  u.  G ) `  X
)  =  ( G `
 X ) )

Proof of Theorem fvun2
StepHypRef Expression
1 uncom 3281 . . 3  |-  ( F  u.  G )  =  ( G  u.  F
)
21fveq1i 5518 . 2  |-  ( ( F  u.  G ) `
 X )  =  ( ( G  u.  F ) `  X
)
3 incom 3329 . . . . . 6  |-  ( A  i^i  B )  =  ( B  i^i  A
)
43eqeq1i 2185 . . . . 5  |-  ( ( A  i^i  B )  =  (/)  <->  ( B  i^i  A )  =  (/) )
54anbi1i 458 . . . 4  |-  ( ( ( A  i^i  B
)  =  (/)  /\  X  e.  B )  <->  ( ( B  i^i  A )  =  (/)  /\  X  e.  B
) )
6 fvun1 5584 . . . 4  |-  ( ( G  Fn  B  /\  F  Fn  A  /\  ( ( B  i^i  A )  =  (/)  /\  X  e.  B ) )  -> 
( ( G  u.  F ) `  X
)  =  ( G `
 X ) )
75, 6syl3an3b 1276 . . 3  |-  ( ( G  Fn  B  /\  F  Fn  A  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( G  u.  F ) `  X
)  =  ( G `
 X ) )
873com12 1207 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( G  u.  F ) `  X
)  =  ( G `
 X ) )
92, 8eqtrid 2222 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( F  u.  G ) `  X
)  =  ( G `
 X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148    u. cun 3129    i^i cin 3130   (/)c0 3424    Fn wfn 5213   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  caseinr  7093
  Copyright terms: Public domain W3C validator