| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvun2 | GIF version | ||
| Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| fvun2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3328 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
| 2 | 1 | fveq1i 5604 | . 2 ⊢ ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐺 ∪ 𝐹)‘𝑋) |
| 3 | incom 3376 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 4 | 3 | eqeq1i 2217 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) |
| 5 | 4 | anbi1i 458 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵) ↔ ((𝐵 ∩ 𝐴) = ∅ ∧ 𝑋 ∈ 𝐵)) |
| 6 | fvun1 5673 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ ((𝐵 ∩ 𝐴) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) | |
| 7 | 5, 6 | syl3an3b 1290 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) |
| 8 | 7 | 3com12 1212 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) |
| 9 | 2, 8 | eqtrid 2254 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∪ cun 3175 ∩ cin 3176 ∅c0 3471 Fn wfn 5289 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 |
| This theorem is referenced by: caseinr 7227 |
| Copyright terms: Public domain | W3C validator |