| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ialgrlemconst | Unicode version | ||
| Description: Lemma for ialgr0 12436. Closure of a constant function, in a form suitable for theorems such as seq3-1 10624 or seqf 10626. (Contributed by Jim Kingdon, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| ialgrlemconst.z |
|
| ialgrlemconst.a |
|
| Ref | Expression |
|---|---|
| ialgrlemconst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ialgrlemconst.a |
. . 3
| |
| 2 | ialgrlemconst.z |
. . . . 5
| |
| 3 | 2 | eleq2i 2273 |
. . . 4
|
| 4 | 3 | biimpri 133 |
. . 3
|
| 5 | fvconst2g 5810 |
. . 3
| |
| 6 | 1, 4, 5 | syl2an 289 |
. 2
|
| 7 | 1 | adantr 276 |
. 2
|
| 8 | 6, 7 | eqeltrd 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fv 5287 |
| This theorem is referenced by: ialgr0 12436 algrp1 12438 mulgnn0z 13555 mulgnndir 13557 mulgpropdg 13570 |
| Copyright terms: Public domain | W3C validator |