ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrlemconst Unicode version

Theorem ialgrlemconst 11713
Description: Lemma for ialgr0 11714. Closure of a constant function, in a form suitable for theorems such as seq3-1 10226 or seqf 10227. (Contributed by Jim Kingdon, 22-Jul-2021.)
Hypotheses
Ref Expression
ialgrlemconst.z  |-  Z  =  ( ZZ>= `  M )
ialgrlemconst.a  |-  ( ph  ->  A  e.  S )
Assertion
Ref Expression
ialgrlemconst  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )

Proof of Theorem ialgrlemconst
StepHypRef Expression
1 ialgrlemconst.a . . 3  |-  ( ph  ->  A  e.  S )
2 ialgrlemconst.z . . . . 5  |-  Z  =  ( ZZ>= `  M )
32eleq2i 2204 . . . 4  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
43biimpri 132 . . 3  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  Z )
5 fvconst2g 5627 . . 3  |-  ( ( A  e.  S  /\  x  e.  Z )  ->  ( ( Z  X.  { A } ) `  x )  =  A )
61, 4, 5syl2an 287 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  =  A )
71adantr 274 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A  e.  S )
86, 7eqeltrd 2214 1  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {csn 3522    X. cxp 4532   ` cfv 5118   ZZ>=cuz 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126
This theorem is referenced by:  ialgr0  11714  algrp1  11716
  Copyright terms: Public domain W3C validator