ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrlemconst Unicode version

Theorem ialgrlemconst 11975
Description: Lemma for ialgr0 11976. Closure of a constant function, in a form suitable for theorems such as seq3-1 10395 or seqf 10396. (Contributed by Jim Kingdon, 22-Jul-2021.)
Hypotheses
Ref Expression
ialgrlemconst.z  |-  Z  =  ( ZZ>= `  M )
ialgrlemconst.a  |-  ( ph  ->  A  e.  S )
Assertion
Ref Expression
ialgrlemconst  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )

Proof of Theorem ialgrlemconst
StepHypRef Expression
1 ialgrlemconst.a . . 3  |-  ( ph  ->  A  e.  S )
2 ialgrlemconst.z . . . . 5  |-  Z  =  ( ZZ>= `  M )
32eleq2i 2233 . . . 4  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
43biimpri 132 . . 3  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  Z )
5 fvconst2g 5699 . . 3  |-  ( ( A  e.  S  /\  x  e.  Z )  ->  ( ( Z  X.  { A } ) `  x )  =  A )
61, 4, 5syl2an 287 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  =  A )
71adantr 274 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A  e.  S )
86, 7eqeltrd 2243 1  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {csn 3576    X. cxp 4602   ` cfv 5188   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  ialgr0  11976  algrp1  11978
  Copyright terms: Public domain W3C validator