ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgr0 Unicode version

Theorem ialgr0 12044
Description: The value of the algorithm iterator  R at  0 is the initial state  A. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
Hypotheses
Ref Expression
algrf.1  |-  Z  =  ( ZZ>= `  M )
algrf.2  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
algrf.3  |-  ( ph  ->  M  e.  ZZ )
algrf.4  |-  ( ph  ->  A  e.  S )
algrf.5  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
ialgr0  |-  ( ph  ->  ( R `  M
)  =  A )

Proof of Theorem ialgr0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . 3  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
21fveq1i 5517 . 2  |-  ( R `
 M )  =  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )
3 algrf.3 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 algrf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
5 algrf.4 . . . . 5  |-  ( ph  ->  A  e.  S )
64, 5ialgrlemconst 12043 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )
7 algrf.5 . . . . 5  |-  ( ph  ->  F : S --> S )
87ialgrlem1st 12042 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )
93, 6, 8seq3-1 10460 . . 3  |-  ( ph  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  ( ( Z  X.  { A }
) `  M )
)
10 uzid 9542 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
113, 10syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
1211, 4eleqtrrdi 2271 . . . 4  |-  ( ph  ->  M  e.  Z )
13 fvconst2g 5731 . . . 4  |-  ( ( A  e.  S  /\  M  e.  Z )  ->  ( ( Z  X.  { A } ) `  M )  =  A )
145, 12, 13syl2anc 411 . . 3  |-  ( ph  ->  ( ( Z  X.  { A } ) `  M )  =  A )
159, 14eqtrd 2210 . 2  |-  ( ph  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  A )
162, 15eqtrid 2222 1  |-  ( ph  ->  ( R `  M
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   {csn 3593    X. cxp 4625    o. ccom 4631   -->wf 5213   ` cfv 5217   1stc1st 6139   ZZcz 9253   ZZ>=cuz 9528    seqcseq 10445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446
This theorem is referenced by:  algcvg  12048  eucalg  12059
  Copyright terms: Public domain W3C validator