ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgr0 Unicode version

Theorem ialgr0 11761
Description: The value of the algorithm iterator  R at  0 is the initial state  A. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
Hypotheses
Ref Expression
algrf.1  |-  Z  =  ( ZZ>= `  M )
algrf.2  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
algrf.3  |-  ( ph  ->  M  e.  ZZ )
algrf.4  |-  ( ph  ->  A  e.  S )
algrf.5  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
ialgr0  |-  ( ph  ->  ( R `  M
)  =  A )

Proof of Theorem ialgr0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . 3  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
21fveq1i 5430 . 2  |-  ( R `
 M )  =  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )
3 algrf.3 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 algrf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
5 algrf.4 . . . . 5  |-  ( ph  ->  A  e.  S )
64, 5ialgrlemconst 11760 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )
7 algrf.5 . . . . 5  |-  ( ph  ->  F : S --> S )
87ialgrlem1st 11759 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )
93, 6, 8seq3-1 10264 . . 3  |-  ( ph  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  ( ( Z  X.  { A }
) `  M )
)
10 uzid 9364 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
113, 10syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
1211, 4eleqtrrdi 2234 . . . 4  |-  ( ph  ->  M  e.  Z )
13 fvconst2g 5642 . . . 4  |-  ( ( A  e.  S  /\  M  e.  Z )  ->  ( ( Z  X.  { A } ) `  M )  =  A )
145, 12, 13syl2anc 409 . . 3  |-  ( ph  ->  ( ( Z  X.  { A } ) `  M )  =  A )
159, 14eqtrd 2173 . 2  |-  ( ph  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  A )
162, 15syl5eq 2185 1  |-  ( ph  ->  ( R `  M
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   {csn 3532    X. cxp 4545    o. ccom 4551   -->wf 5127   ` cfv 5131   1stc1st 6044   ZZcz 9078   ZZ>=cuz 9350    seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-seqfrec 10250
This theorem is referenced by:  algcvg  11765  eucalg  11776
  Copyright terms: Public domain W3C validator