ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3-1 Unicode version

Theorem seq3-1 10557
Description: Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.)
Hypotheses
Ref Expression
seq3-1.m  |-  ( ph  ->  M  e.  ZZ )
seq3-1.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3-1.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3-1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, S, y    ph, x, y

Proof of Theorem seq3-1
Dummy variables  a  b  w  z  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3-1.m . 2  |-  ( ph  ->  M  e.  ZZ )
2 fveq2 5559 . . . 4  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
32eleq1d 2265 . . 3  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
4 seq3-1.f . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
54ralrimiva 2570 . . 3  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
6 uzid 9618 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
71, 6syl 14 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
83, 5, 7rspcdva 2873 . 2  |-  ( ph  ->  ( F `  M
)  e.  S )
9 ssv 3206 . . 3  |-  S  C_  _V
109a1i 9 . 2  |-  ( ph  ->  S  C_  _V )
11 seq3-1.pl . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
124, 11iseqovex 10553 . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
13 iseqvalcbv 10554 . 2  |- frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  _V  |->  <. (
a  +  1 ) ,  ( a ( c  e.  ( ZZ>= `  M ) ,  d  e.  S  |->  ( d 
.+  ( F `  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
141, 13, 4, 11seq3val 10555 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( a  e.  (
ZZ>= `  M ) ,  b  e.  _V  |->  <.
( a  +  1 ) ,  ( a ( c  e.  (
ZZ>= `  M ) ,  d  e.  S  |->  ( d  .+  ( F `
 ( c  +  1 ) ) ) ) b ) >.
) ,  <. M , 
( F `  M
) >. ) )
151, 8, 10, 12, 13, 14frecuzrdg0t 10517 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   <.cop 3626   ` cfv 5259  (class class class)co 5923    e. cmpo 5925  freccfrec 6450   1c1 7883    + caddc 7885   ZZcz 9329   ZZ>=cuz 9604    seqcseq 10542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-0id 7990  ax-rnegex 7991  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-ltadd 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-frec 6451  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-inn 8994  df-n0 9253  df-z 9330  df-uz 9605  df-seqfrec 10543
This theorem is referenced by:  seq1g  10558  seq3clss  10566  seq3fveq2  10570  seq3fveq  10574  seq3shft2  10576  seq3split  10583  seq3-1p  10585  seq3caopr3  10586  seq3id3  10619  seq3id  10620  seq3homo  10622  seq3z  10623  seqfeq4g  10626  ser3ge0  10631  exp3vallem  10635  exp1  10640  fac1  10824  bcn2  10859  seq3coll  10937  resqrexlemf1  11176  sumsnf  11577  isumrpcl  11662  clim2prod  11707  prodfap0  11713  prodfrecap  11714  prodsnf  11760  ef0lem  11828  ege2le3  11839  efgt1p2  11863  efgt1p  11864  ialgr0  12223  pcmpt  12523  gsumsplit1r  13067  gsumprval  13068  gsumfzz  13153  mulg1  13285
  Copyright terms: Public domain W3C validator