ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3-1 Unicode version

Theorem seq3-1 10474
Description: Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.)
Hypotheses
Ref Expression
seq3-1.m  |-  ( ph  ->  M  e.  ZZ )
seq3-1.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3-1.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3-1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, S, y    ph, x, y

Proof of Theorem seq3-1
Dummy variables  a  b  w  z  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3-1.m . 2  |-  ( ph  ->  M  e.  ZZ )
2 fveq2 5527 . . . 4  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
32eleq1d 2256 . . 3  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
4 seq3-1.f . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
54ralrimiva 2560 . . 3  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
6 uzid 9556 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
71, 6syl 14 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
83, 5, 7rspcdva 2858 . 2  |-  ( ph  ->  ( F `  M
)  e.  S )
9 ssv 3189 . . 3  |-  S  C_  _V
109a1i 9 . 2  |-  ( ph  ->  S  C_  _V )
11 seq3-1.pl . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
124, 11iseqovex 10470 . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
13 iseqvalcbv 10471 . 2  |- frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  _V  |->  <. (
a  +  1 ) ,  ( a ( c  e.  ( ZZ>= `  M ) ,  d  e.  S  |->  ( d 
.+  ( F `  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
141, 13, 4, 11seq3val 10472 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( a  e.  (
ZZ>= `  M ) ,  b  e.  _V  |->  <.
( a  +  1 ) ,  ( a ( c  e.  (
ZZ>= `  M ) ,  d  e.  S  |->  ( d  .+  ( F `
 ( c  +  1 ) ) ) ) b ) >.
) ,  <. M , 
( F `  M
) >. ) )
151, 8, 10, 12, 13, 14frecuzrdg0t 10436 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   _Vcvv 2749    C_ wss 3141   <.cop 3607   ` cfv 5228  (class class class)co 5888    e. cmpo 5890  freccfrec 6405   1c1 7826    + caddc 7828   ZZcz 9267   ZZ>=cuz 9542    seqcseq 10459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-seqfrec 10460
This theorem is referenced by:  seq3clss  10481  seq3fveq2  10483  seq3fveq  10485  seq3shft2  10487  seq3split  10493  seq3-1p  10494  seq3caopr3  10495  seq3id3  10521  seq3id  10522  seq3homo  10524  seq3z  10525  ser3ge0  10531  exp3vallem  10535  exp1  10540  fac1  10723  bcn2  10758  seq3coll  10836  resqrexlemf1  11031  sumsnf  11431  isumrpcl  11516  clim2prod  11561  prodfap0  11567  prodfrecap  11568  prodsnf  11614  ef0lem  11682  ege2le3  11693  efgt1p2  11717  efgt1p  11718  ialgr0  12058  pcmpt  12355  mulg1  13022
  Copyright terms: Public domain W3C validator