ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrlemconst GIF version

Theorem ialgrlemconst 12531
Description: Lemma for ialgr0 12532. Closure of a constant function, in a form suitable for theorems such as seq3-1 10651 or seqf 10653. (Contributed by Jim Kingdon, 22-Jul-2021.)
Hypotheses
Ref Expression
ialgrlemconst.z 𝑍 = (ℤ𝑀)
ialgrlemconst.a (𝜑𝐴𝑆)
Assertion
Ref Expression
ialgrlemconst ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)

Proof of Theorem ialgrlemconst
StepHypRef Expression
1 ialgrlemconst.a . . 3 (𝜑𝐴𝑆)
2 ialgrlemconst.z . . . . 5 𝑍 = (ℤ𝑀)
32eleq2i 2276 . . . 4 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
43biimpri 133 . . 3 (𝑥 ∈ (ℤ𝑀) → 𝑥𝑍)
5 fvconst2g 5826 . . 3 ((𝐴𝑆𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
61, 4, 5syl2an 289 . 2 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
71adantr 276 . 2 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐴𝑆)
86, 7eqeltrd 2286 1 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  {csn 3646   × cxp 4694  cfv 5294  cuz 9690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302
This theorem is referenced by:  ialgr0  12532  algrp1  12534  mulgnn0z  13652  mulgnndir  13654  mulgpropdg  13667
  Copyright terms: Public domain W3C validator