Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ialgrlemconst | GIF version |
Description: Lemma for ialgr0 11998. Closure of a constant function, in a form suitable for theorems such as seq3-1 10416 or seqf 10417. (Contributed by Jim Kingdon, 22-Jul-2021.) |
Ref | Expression |
---|---|
ialgrlemconst.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ialgrlemconst.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
Ref | Expression |
---|---|
ialgrlemconst | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ialgrlemconst.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
2 | ialgrlemconst.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | eleq2i 2237 | . . . 4 ⊢ (𝑥 ∈ 𝑍 ↔ 𝑥 ∈ (ℤ≥‘𝑀)) |
4 | 3 | biimpri 132 | . . 3 ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → 𝑥 ∈ 𝑍) |
5 | fvconst2g 5710 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) | |
6 | 1, 4, 5 | syl2an 287 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) |
7 | 1 | adantr 274 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ 𝑆) |
8 | 6, 7 | eqeltrd 2247 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {csn 3583 × cxp 4609 ‘cfv 5198 ℤ≥cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 |
This theorem is referenced by: ialgr0 11998 algrp1 12000 |
Copyright terms: Public domain | W3C validator |