| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ialgrlemconst | GIF version | ||
| Description: Lemma for ialgr0 12532. Closure of a constant function, in a form suitable for theorems such as seq3-1 10651 or seqf 10653. (Contributed by Jim Kingdon, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| ialgrlemconst.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ialgrlemconst.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| ialgrlemconst | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ialgrlemconst.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 2 | ialgrlemconst.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 2 | eleq2i 2276 | . . . 4 ⊢ (𝑥 ∈ 𝑍 ↔ 𝑥 ∈ (ℤ≥‘𝑀)) |
| 4 | 3 | biimpri 133 | . . 3 ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → 𝑥 ∈ 𝑍) |
| 5 | fvconst2g 5826 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) | |
| 6 | 1, 4, 5 | syl2an 289 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) |
| 7 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ 𝑆) |
| 8 | 6, 7 | eqeltrd 2286 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 {csn 3646 × cxp 4694 ‘cfv 5294 ℤ≥cuz 9690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 |
| This theorem is referenced by: ialgr0 12532 algrp1 12534 mulgnn0z 13652 mulgnndir 13654 mulgpropdg 13667 |
| Copyright terms: Public domain | W3C validator |