Theorem List for Intuitionistic Logic Explorer - 12001-12100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | isumle 12001* |
Comparison of two infinite sums. (Contributed by Paul Chapman,
13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
       
           
           
     

  
     |
| |
| Theorem | isumlessdc 12002* |
A finite sum of nonnegative numbers is less than or equal to its limit.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
                  
 DECID        
 
  
     |
| |
| 4.9.5 Miscellaneous converging and diverging
sequences
|
| |
| Theorem | divcnv 12003* |
The sequence of reciprocals of positive integers, multiplied by the
factor ,
converges to zero. (Contributed by NM, 6-Feb-2008.)
(Revised by Jim Kingdon, 22-Oct-2022.)
|
  
 
  |
| |
| 4.9.6 Arithmetic series
|
| |
| Theorem | arisum 12004* |
Arithmetic series sum of the first positive integers. This is
Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 22-May-2014.)
|
                 |
| |
| Theorem | arisum2 12005* |
Arithmetic series sum of the first nonnegative integers.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV,
2-Aug-2021.)
|
                   |
| |
| Theorem | trireciplem 12006 |
Lemma for trirecip 12007. Show that the sum converges. (Contributed
by
Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro,
22-May-2014.)
|
   
      
 |
| |
| Theorem | trirecip 12007 |
The sum of the reciprocals of the triangle numbers converge to two.
This is Metamath 100 proof #42. (Contributed by Scott Fenton,
23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
|

       |
| |
| 4.9.7 Geometric series
|
| |
| Theorem | expcnvap0 12008* |
A sequence of powers of a complex number with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 23-Oct-2022.)
|
         #   
       |
| |
| Theorem | expcnvre 12009* |
A sequence of powers of a nonnegative real number less than one
converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
|
       
       |
| |
| Theorem | expcnv 12010* |
A sequence of powers of a complex number with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 28-Oct-2022.)
|
         
       |
| |
| Theorem | explecnv 12011* |
A sequence of terms converges to zero when it is less than powers of a
number whose
absolute value is smaller than 1. (Contributed by
NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
                         
                 |
| |
| Theorem | geosergap 12012* |
The value of the finite geometric series       ...
    . (Contributed by Mario Carneiro, 2-May-2016.)
(Revised by Jim Kingdon, 24-Oct-2022.)
|
   #             ..^                      |
| |
| Theorem | geoserap 12013* |
The value of the finite geometric series
    ...
    . This is Metamath 100 proof #66. (Contributed by
NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
|
   #                             |
| |
| Theorem | pwm1geoserap1 12014* |
The n-th power of a number decreased by 1 expressed by the finite
geometric series
    ...     .
(Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon,
24-Oct-2022.)
|
     #           
               |
| |
| Theorem | absltap 12015 |
Less-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
           #   |
| |
| Theorem | absgtap 12016 |
Greater-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
           #   |
| |
| Theorem | geolim 12017* |
The partial sums in the infinite series
    ...
converge to     . (Contributed by NM,
15-May-2006.)
|
                    
         |
| |
| Theorem | geolim2 12018* |
The partial sums in the geometric series       ...
converge to         .
(Contributed by NM,
6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
                             
          |
| |
| Theorem | georeclim 12019* |
The limit of a geometric series of reciprocals. (Contributed by Paul
Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
                      
         |
| |
| Theorem | geo2sum 12020* |
The value of the finite geometric series       ...
   ,
multiplied by a constant. (Contributed by Mario
Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
                
        |
| |
| Theorem | geo2sum2 12021* |
The value of the finite geometric series
...
    . (Contributed by Mario Carneiro, 7-Sep-2016.)
|
   ..^          
   |
| |
| Theorem | geo2lim 12022* |
The value of the infinite geometric series
      ... , multiplied by a constant. (Contributed
by Mario Carneiro, 15-Jun-2014.)
|
        
  
  |
| |
| Theorem | geoisum 12023* |
The infinite sum of     ... is
    .
(Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
                  |
| |
| Theorem | geoisumr 12024* |
The infinite sum of reciprocals
        ... is   .
(Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
                    |
| |
| Theorem | geoisum1 12025* |
The infinite sum of     ... is     .
(Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
                  |
| |
| Theorem | geoisum1c 12026* |
The infinite sum of
        ... is
    . (Contributed by NM, 2-Nov-2007.) (Revised
by Mario Carneiro, 26-Apr-2014.)
|
                
     |
| |
| Theorem | 0.999... 12027 |
The recurring decimal 0.999..., which is defined as the infinite sum 0.9 +
0.09 + 0.009 + ... i.e.         
, is exactly equal to
1. (Contributed by NM, 2-Nov-2007.)
(Revised by AV, 8-Sep-2021.)
|

 ;      |
| |
| Theorem | geoihalfsum 12028 |
Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... =
1. Uses geoisum1 12025. This is a representation of .111... in
binary with
an infinite number of 1's. Theorem 0.999... 12027 proves a similar claim for
.999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.)
(Proof shortened by AV, 9-Jul-2022.)
|

       |
| |
| 4.9.8 Ratio test for infinite series
convergence
|
| |
| Theorem | cvgratnnlembern 12029 |
Lemma for cvgratnn 12037. Upper bound for a geometric progression of
positive ratio less than one. (Contributed by Jim Kingdon,
24-Nov-2022.)
|
                 
     |
| |
| Theorem | cvgratnnlemnexp 12030* |
Lemma for cvgratnn 12037. (Contributed by Jim Kingdon, 15-Nov-2022.)
|
                                                                   |
| |
| Theorem | cvgratnnlemmn 12031* |
Lemma for cvgratnn 12037. (Contributed by Jim Kingdon,
15-Nov-2022.)
|
                                              
       
                  |
| |
| Theorem | cvgratnnlemseq 12032* |
Lemma for cvgratnn 12037. (Contributed by Jim Kingdon,
21-Nov-2022.)
|
                                              
                            |
| |
| Theorem | cvgratnnlemabsle 12033* |
Lemma for cvgratnn 12037. (Contributed by Jim Kingdon,
21-Nov-2022.)
|
                                              
   
                     
                |
| |
| Theorem | cvgratnnlemsumlt 12034* |
Lemma for cvgratnn 12037. (Contributed by Jim Kingdon,
23-Nov-2022.)
|
                                              
             
      |
| |
| Theorem | cvgratnnlemfm 12035* |
Lemma for cvgratnn 12037. (Contributed by Jim Kingdon, 23-Nov-2022.)
|
                                                                         |
| |
| Theorem | cvgratnnlemrate 12036* |
Lemma for cvgratnn 12037. (Contributed by Jim Kingdon, 21-Nov-2022.)
|
                                              
                                                |
| |
| Theorem | cvgratnn 12037* |
Ratio test for convergence of a complex infinite series. If the ratio
of the
absolute values of successive terms in an infinite
sequence is
less than 1 for all terms, then the infinite sum of
the terms of
converges to a complex number. Although this
theorem is similar to cvgratz 12038 and cvgratgt0 12039, the decision to
index starting at one is not merely cosmetic, as proving convergence
using climcvg1n 11856 is sensitive to how a sequence is indexed.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
12-Nov-2022.)
|
                                         
 |
| |
| Theorem | cvgratz 12038* |
Ratio test for convergence of a complex infinite series. If the ratio
of the
absolute values of successive terms in an infinite sequence
is less than 1
for all terms, then the infinite sum of the terms
of converges
to a complex number. (Contributed by NM,
26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
|
             
                                

 |
| |
| Theorem | cvgratgt0 12039* |
Ratio test for convergence of a complex infinite series. If the ratio
of the
absolute values of successive terms in an infinite sequence
is less than 1
for all terms beyond some index , then the
infinite sum of the terms of converges to a complex number.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
11-Nov-2022.)
|
                                                  

 |
| |
| 4.9.9 Mertens' theorem
|
| |
| Theorem | mertenslemub 12040* |
Lemma for mertensabs 12043. An upper bound for . (Contributed by
Jim Kingdon, 3-Dec-2022.)
|
               
                               
                         |
| |
| Theorem | mertenslemi1 12041* |
Lemma for mertensabs 12043. (Contributed by Mario Carneiro,
29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
|
                     
                                       

  
                                                      
 
        
   
               
                                  
       |
| |
| Theorem | mertenslem2 12042* |
Lemma for mertensabs 12043. (Contributed by Mario Carneiro,
28-Apr-2014.)
|
                     
                                       

  
                                                      
 
        
                       
       |
| |
| Theorem | mertensabs 12043* |
Mertens' theorem. If    is an absolutely convergent series and
   is convergent, then
           
                (and
this latter series is convergent). This latter sum is commonly known as
the Cauchy product of the sequences. The proof follows the outline at
http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem.
(Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
                     
                                       

  
    
         |
| |
| 4.9.10 Finite and infinite
products
|
| |
| 4.9.10.1 Product sequences
|
| |
| Theorem | prodf 12044* |
An infinite product of complex terms is a function from an upper set of
integers to .
(Contributed by Scott Fenton, 4-Dec-2017.)
|
       
                |
| |
| Theorem | clim2prod 12045* |
The limit of an infinite product with an initial segment added.
(Contributed by Scott Fenton, 18-Dec-2017.)
|
       
           
    
          |
| |
| Theorem | clim2divap 12046* |
The limit of an infinite product with an initial segment removed.
(Contributed by Scott Fenton, 20-Dec-2017.)
|
       
         
        #    
             |
| |
| Theorem | prod3fmul 12047* |
The product of two infinite products. (Contributed by Scott Fenton,
18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
|
            
           
           
                     
                |
| |
| Theorem | prodf1 12048 |
The value of the partial products in a one-valued infinite product.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
              
  |
| |
| Theorem | prodf1f 12049 |
A one-valued infinite product is equal to the constant one function.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
                  |
| |
| Theorem | prodfclim1 12050 |
The constant one product converges to one. (Contributed by Scott
Fenton, 5-Dec-2017.)
|
              |
| |
| Theorem | prodfap0 12051* |
The product of finitely many terms apart from zero is apart from zero.
(Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon,
23-Mar-2024.)
|
            
           
    #         #   |
| |
| Theorem | prodfrecap 12052* |
The reciprocal of a finite product. (Contributed by Scott Fenton,
15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
|
            
           
    #                          
           

         |
| |
| Theorem | prodfdivap 12053* |
The quotient of two products. (Contributed by Scott Fenton,
15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
|
            
           
           
    #        
        
      
                      |
| |
| 4.9.10.2 Non-trivial convergence
|
| |
| Theorem | ntrivcvgap 12054* |
A non-trivially converging infinite product converges. (Contributed by
Scott Fenton, 18-Dec-2017.)
|
         #   
             
 |
| |
| Theorem | ntrivcvgap0 12055* |
A product that converges to a value apart from zero converges
non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
|
         
  #
      #   
   |
| |
| 4.9.10.3 Complex products
|
| |
| Syntax | cprod 12056 |
Extend class notation to include complex products.
|
  |
| |
| Definition | df-proddc 12057* |
Define the product of a series with an index set of integers .
This definition takes most of the aspects of df-sumdc 11860 and adapts them
for multiplication instead of addition. However, we insist that in the
infinite case, there is a nonzero tail of the sequence. This ensures
that the convergence criteria match those of infinite sums.
(Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon,
21-Mar-2024.)
|

                DECID   
        #           
      
  
             
 

         ![]_ ]_](_urbrack.gif)            |
| |
| Theorem | prodeq1f 12058 |
Equality theorem for a product. (Contributed by Scott Fenton,
1-Dec-2017.)
|
     
   |
| |
| Theorem | prodeq1 12059* |
Equality theorem for a product. (Contributed by Scott Fenton,
1-Dec-2017.)
|
 
   |
| |
| Theorem | nfcprod1 12060* |
Bound-variable hypothesis builder for product. (Contributed by Scott
Fenton, 4-Dec-2017.)
|
      |
| |
| Theorem | nfcprod 12061* |
Bound-variable hypothesis builder for product: if is (effectively)
not free in
and , it is not free
in   .
(Contributed by Scott Fenton, 1-Dec-2017.)
|
        |
| |
| Theorem | prodeq2w 12062* |
Equality theorem for product, when the class expressions and
are equal everywhere. Proved using only Extensionality. (Contributed
by Scott Fenton, 4-Dec-2017.)
|
      |
| |
| Theorem | prodeq2 12063* |
Equality theorem for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
  
   |
| |
| Theorem | cbvprod 12064* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
          
  |
| |
| Theorem | cbvprodv 12065* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
     |
| |
| Theorem | cbvprodi 12066* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
    
    |
| |
| Theorem | prodeq1i 12067* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|

  |
| |
| Theorem | prodeq2i 12068* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
     |
| |
| Theorem | prodeq12i 12069* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
  
  |
| |
| Theorem | prodeq1d 12070* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
       |
| |
| Theorem | prodeq2d 12071* |
Equality deduction for product. Note that unlike prodeq2dv 12072,
may occur in . (Contributed by Scott Fenton, 4-Dec-2017.)
|
        |
| |
| Theorem | prodeq2dv 12072* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
         |
| |
| Theorem | prodeq2sdv 12073* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
       |
| |
| Theorem | 2cprodeq2dv 12074* |
Equality deduction for double product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
      
    |
| |
| Theorem | prodeq12dv 12075* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
      
    |
| |
| Theorem | prodeq12rdv 12076* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
      
    |
| |
| Theorem | prodrbdclem 12077* |
Lemma for prodrbdc 12080. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 4-Apr-2024.)
|
    
             DECID              
       
     |
| |
| Theorem | fproddccvg 12078* |
The sequence of partial products of a finite product converges to
the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
|
    
             DECID                          |
| |
| Theorem | prodrbdclem2 12079* |
Lemma for prodrbdc 12080. (Contributed by Scott Fenton,
4-Dec-2017.)
|
    
                            
DECID
       
DECID
       
     
   |
| |
| Theorem | prodrbdc 12080* |
Rebase the starting point of a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
    
                            
DECID
       
DECID
    
  
   |
| |
| Theorem | prodmodclem3 12081* |
Lemma for prodmodc 12084. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
    
♯  
      ![]_ ]_](_urbrack.gif)     
                            
 
      |
| |
| Theorem | prodmodclem2a 12082* |
Lemma for prodmodc 12084. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
    
♯  
      ![]_ ]_](_urbrack.gif)           DECID                           ♯         
        |
| |
| Theorem | prodmodclem2 12083* |
Lemma for prodmodc 12084. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 13-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
    
           DECID            #   
   
    
                 
   |
| |
| Theorem | prodmodc 12084* |
A product has at most one limit. (Contributed by Scott Fenton,
4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
                  DECID   
        #   
   
             
 
        |
| |
| Theorem | zproddc 12085* |
Series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
           #   
      DECID            
              |
| |
| Theorem | iprodap 12086* |
Series product with an upper integer index set (i.e. an infinite
product.) (Contributed by Scott Fenton, 5-Dec-2017.)
|
           #   
               
      |
| |
| Theorem | zprodap0 12087* |
Nonzero series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 6-Dec-2017.)
|
       #
    
   DECID     
            
      |
| |
| Theorem | iprodap0 12088* |
Nonzero series product with an upper integer index set (i.e. an
infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
|
       #
    
  
           
  |
| |
| 4.9.10.4 Finite products
|
| |
| Theorem | fprodseq 12089* |
The value of a product over a nonempty finite set. (Contributed by
Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
|
      
                
    
            
             |
| |
| Theorem | fprodntrivap 12090* |
A non-triviality lemma for finite sequences. (Contributed by Scott
Fenton, 16-Dec-2017.)
|
            
    #  
       
   |
| |
| Theorem | prod0 12091 |
A product over the empty set is one. (Contributed by Scott Fenton,
5-Dec-2017.)
|

 |
| |
| Theorem | prod1dc 12092* |
Any product of one over a valid set is one. (Contributed by Scott
Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
|
            DECID      |
| |
| Theorem | prodfct 12093* |
A lemma to facilitate conversions from the function form to the
class-variable form of a product. (Contributed by Scott Fenton,
7-Dec-2017.)
|
  
     
   |
| |
| Theorem | fprodf1o 12094* |
Re-index a finite product using a bijection. (Contributed by Scott
Fenton, 7-Dec-2017.)
|
  
             
  
       |
| |
| Theorem | prodssdc 12095* |
Change the index set to a subset in an upper integer product.
(Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon,
6-Aug-2024.)
|
                #                       DECID     
  
             DECID  
    |
| |
| Theorem | fprodssdc 12096* |
Change the index set to a subset in a finite sum. (Contributed by Scott
Fenton, 16-Dec-2017.)
|
        DECID        
      |
| |
| Theorem | fprodmul 12097* |
The product of two finite products. (Contributed by Scott Fenton,
14-Dec-2017.)
|
       
     
      |
| |
| Theorem | prodsnf 12098* |
A product of a singleton is the term. A version of prodsn 12099 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
  
          |
| |
| Theorem | prodsn 12099* |
A product of a singleton is the term. (Contributed by Scott Fenton,
14-Dec-2017.)
|
           |
| |
| Theorem | fprod1 12100* |
A finite product of only one term is the term itself. (Contributed by
Scott Fenton, 14-Dec-2017.)
|
             |