HomeHome Intuitionistic Logic Explorer
Theorem List (p. 121 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12001-12100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfprodfac 12001* Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
 |-  ( A  e.  NN0  ->  ( ! `  A )  =  prod_ k  e.  (
 1 ... A ) k )
 
Theoremfprodabs 12002* The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  e.  CC )   =>    |-  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A ) )
 
Theoremfprodeq0 12003* Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  =  N ) 
 ->  A  =  0 )   =>    |-  ( ( ph  /\  K  e.  ( ZZ>= `  N )
 )  ->  prod_ k  e.  ( M ... K ) A  =  0
 )
 
Theoremfprodshft 12004* Shift the index of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  -  K )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( M  +  K ) ... ( N  +  K ) ) B )
 
Theoremfprodrev 12005* Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( K  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( K  -  N ) ... ( K  -  M ) ) B )
 
Theoremfprodconst 12006* The product of constant terms ( k is not free in  B). (Contributed by Scott Fenton, 12-Jan-2018.)
 |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
 prod_ k  e.  A  B  =  ( B ^ ( `  A )
 ) )
 
Theoremfprodap0 12007* A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  B #  0 )
 
Theoremfprod2dlemstep 12008* Lemma for fprod2d 12009- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   &    |-  ( ph  ->  -.  y  e.  x )   &    |-  ( ph  ->  ( x  u.  { y } )  C_  A )   &    |-  ( ph  ->  x  e.  Fin )   &    |-  ( ps 
 <-> 
 prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )   =>    |-  ( ( ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y }
 ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  { y }
 ) ( { j }  X.  B ) D )
 
Theoremfprod2d 12009* Write a double product as a product over a two-dimensional region. Compare fsum2d 11821. (Contributed by Scott Fenton, 30-Jan-2018.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
 
Theoremfprodxp 12010* Combine two products into a single product over the cartesian product. (Contributed by Scott Fenton, 1-Feb-2018.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  ( A  X.  B ) D )
 
Theoremfprodcnv 12011* Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
 |-  ( x  =  <. j ,  k >.  ->  B  =  D )   &    |-  ( y  = 
 <. k ,  j >.  ->  C  =  D )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  Rel  A )   &    |-  ( ( ph  /\  x  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A C )
 
Theoremfprodcom2fi 12012* Interchange order of multiplication. Note that  B ( j ) and  D ( k ) are not necessarily constant expressions. (Contributed by Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  k  e.  C ) 
 ->  D  e.  Fin )   &    |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  B )  <->  ( k  e.  C  /\  j  e.  D ) ) )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  E  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  E  =  prod_ k  e.  C  prod_ j  e.  D  E )
 
Theoremfprodcom 12013* Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ k  e.  B  prod_ j  e.  A  C )
 
Theoremfprod0diagfz 12014* Two ways to express "the product of  A ( j ,  k ) over the triangular region  M  <_  j,  M  <_  k,  j  +  k  <_  N. Compare fisum0diag 11827. (Contributed by Scott Fenton, 2-Feb-2018.)
 |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  prod_ j  e.  ( 0 ... N ) prod_ k  e.  (
 0 ... ( N  -  j ) ) A  =  prod_ k  e.  (
 0 ... N ) prod_
 j  e.  ( 0
 ... ( N  -  k ) ) A )
 
Theoremfprodrec 12015* The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  ( 1  /  B )  =  (
 1  /  prod_ k  e.  A  B ) )
 
Theoremfproddivap 12016* The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C #  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  ( B  /  C )  =  ( prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
 
Theoremfproddivapf 12017* The quotient of two finite products. A version of fproddivap 12016 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  ( B  /  C )  =  ( prod_ k  e.  A  B  / 
 prod_ k  e.  A  C ) )
 
Theoremfprodsplitf 12018* Split a finite product into two parts. A version of fprodsplit 11983 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  U  C  =  (
 prod_ k  e.  A  C  x.  prod_ k  e.  B  C ) )
 
Theoremfprodsplitsn 12019* Separate out a term in a finite product. See also fprodunsn 11990 which is the same but with a distinct variable condition in place of  F/ k ph. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  prod_
 k  e.  ( A  u.  { B }
 ) C  =  (
 prod_ k  e.  A  C  x.  D ) )
 
Theoremfprodsplit1f 12020* Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  F/_ k D )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  A )   &    |-  (
 ( ph  /\  k  =  C )  ->  B  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
 
Theoremfprodclf 12021* Closure of a finite product of complex numbers. A version of fprodcl 11993 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  CC )
 
Theoremfprodap0f 12022* A finite product of terms apart from zero is apart from zero. A version of fprodap0 12007 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B #  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  B #  0 )
 
Theoremfprodge0 12023* If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  0  <_  B )   =>    |-  ( ph  ->  0  <_  prod_
 k  e.  A  B )
 
Theoremfprodeq0g 12024* Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  A )   &    |-  (
 ( ph  /\  k  =  C )  ->  B  =  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  B  =  0 )
 
Theoremfprodge1 12025* If all of the terms of a finite product are greater than or equal to  1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  1  <_  B )   =>    |-  ( ph  ->  1  <_  prod_
 k  e.  A  B )
 
Theoremfprodle 12026* If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  0  <_  B )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  <_  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
 
Theoremfprodmodd 12027* If all factors of two finite products are equal modulo  M, the products are equal modulo  M. (Contributed by AV, 7-Jul-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  ZZ )   &    |-  ( ph  ->  M  e.  NN )   &    |-  (
 ( ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M ) )   =>    |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  (
 prod_ k  e.  A  C  mod  M ) )
 
4.10  Elementary trigonometry
 
4.10.1  The exponential, sine, and cosine functions
 
Syntaxce 12028 Extend class notation to include the exponential function.
 class  exp
 
Syntaxceu 12029 Extend class notation to include Euler's constant  _e = 2.71828....
 class  _e
 
Syntaxcsin 12030 Extend class notation to include the sine function.
 class  sin
 
Syntaxccos 12031 Extend class notation to include the cosine function.
 class  cos
 
Syntaxctan 12032 Extend class notation to include the tangent function.
 class  tan
 
Syntaxcpi 12033 Extend class notation to include the constant pi,  pi = 3.14159....
 class  pi
 
Definitiondf-ef 12034* Define the exponential function. Its value at the complex number  A is  ( exp `  A
) and is called the "exponential of  A"; see efval 12047. (Contributed by NM, 14-Mar-2005.)
 |- 
 exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
 k )  /  ( ! `  k ) ) )
 
Definitiondf-e 12035 Define Euler's constant  _e = 2.71828.... (Contributed by NM, 14-Mar-2005.)
 |-  _e  =  ( exp `  1 )
 
Definitiondf-sin 12036 Define the sine function. (Contributed by NM, 14-Mar-2005.)
 |- 
 sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) ) 
 /  ( 2  x.  _i ) ) )
 
Definitiondf-cos 12037 Define the cosine function. (Contributed by NM, 14-Mar-2005.)
 |- 
 cos  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x ) )  +  ( exp `  ( -u _i  x.  x ) ) ) 
 /  2 ) )
 
Definitiondf-tan 12038 Define the tangent function. We define it this way for cmpt 4113, which requires the form  ( x  e.  A  |->  B ). (Contributed by Mario Carneiro, 14-Mar-2014.)
 |- 
 tan  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( ( sin `  x )  /  ( cos `  x ) ) )
 
Definitiondf-pi 12039 Define the constant pi,  pi = 3.14159..., which is the smallest positive number whose sine is zero. Definition of  pi in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.)
 |-  pi  = inf ( (
 RR+  i^i  ( `' sin " { 0 } )
 ) ,  RR ,  <  )
 
Theoremeftcl 12040 Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.)
 |-  ( ( A  e.  CC  /\  K  e.  NN0 )  ->  ( ( A ^ K )  /  ( ! `  K ) )  e.  CC )
 
Theoremreeftcl 12041 The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
 |-  ( ( A  e.  RR  /\  K  e.  NN0 )  ->  ( ( A ^ K )  /  ( ! `  K ) )  e.  RR )
 
Theoremeftabs 12042 The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.)
 |-  ( ( A  e.  CC  /\  K  e.  NN0 )  ->  ( abs `  (
 ( A ^ K )  /  ( ! `  K ) ) )  =  ( ( ( abs `  A ) ^ K )  /  ( ! `  K ) ) )
 
Theoremeftvalcn 12043* The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( F `  N )  =  (
 ( A ^ N )  /  ( ! `  N ) ) )
 
Theoremefcllemp 12044* Lemma for efcl 12050. The series that defines the exponential function converges. The ratio test cvgratgt0 11919 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F )  e.  dom  ~~>  )
 
Theoremefcllem 12045* Lemma for efcl 12050. The series that defines the exponential function converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
 
Theoremef0lem 12046* The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
 
Theoremefval 12047* Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  CC  ->  ( exp `  A )  =  sum_ k  e. 
 NN0  ( ( A ^ k )  /  ( ! `  k ) ) )
 
Theoremesum 12048 Value of Euler's constant  _e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.)
 |-  _e  =  sum_ k  e.  NN0  ( 1  /  ( ! `  k ) )
 
Theoremeff 12049 Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
 |- 
 exp : CC --> CC
 
Theoremefcl 12050 Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
 
Theoremefval2 12051* Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  e.  CC  ->  ( exp `  A )  =  sum_ k  e. 
 NN0  ( F `  k ) )
 
Theoremefcvg 12052* The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  ~~>  ( exp `  A ) )
 
Theoremefcvgfsum 12053* Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k )  /  ( ! `  k ) ) )   =>    |-  ( A  e.  CC  ->  F  ~~>  ( exp `  A ) )
 
Theoremreefcl 12054 The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  ( A  e.  RR  ->  ( exp `  A )  e.  RR )
 
Theoremreefcld 12055 The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( exp `  A )  e. 
 RR )
 
Theoremere 12056 Euler's constant  _e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
 |-  _e  e.  RR
 
Theoremege2le3 12057 Euler's constant  _e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
 |-  F  =  ( n  e.  NN  |->  ( 2  x.  ( ( 1 
 /  2 ) ^ n ) ) )   &    |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n ) ) )   =>    |-  ( 2  <_  _e  /\  _e  <_  3 )
 
Theoremef0 12058 Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  ( exp `  0
 )  =  1
 
Theoremefcj 12059 The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A )
 ) )
 
Theoremefaddlem 12060* Lemma for efadd 12061 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  G  =  ( n  e.  NN0  |->  ( ( B ^ n )  /  ( ! `  n ) ) )   &    |-  H  =  ( n  e.  NN0  |->  ( ( ( A  +  B ) ^ n )  /  ( ! `  n ) ) )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( exp `  ( A  +  B ) )  =  ( ( exp `  A )  x.  ( exp `  B ) ) )
 
Theoremefadd 12061 Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( A  +  B )
 )  =  ( ( exp `  A )  x.  ( exp `  B ) ) )
 
Theoremefcan 12062 Cancellation law for exponential function. Equation 27 of [Rudin] p. 164. (Contributed by NM, 13-Jan-2006.)
 |-  ( A  e.  CC  ->  ( ( exp `  A )  x.  ( exp `  -u A ) )  =  1
 )
 
Theoremefap0 12063 The exponential of a complex number is apart from zero. (Contributed by Jim Kingdon, 12-Dec-2022.)
 |-  ( A  e.  CC  ->  ( exp `  A ) #  0 )
 
Theoremefne0 12064 The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. The same result also holds with not equal replaced by apart, as seen at efap0 12063 (which will be more useful in most contexts). (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  ( A  e.  CC  ->  ( exp `  A )  =/=  0 )
 
Theoremefneg 12065 The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.)
 |-  ( A  e.  CC  ->  ( exp `  -u A )  =  ( 1  /  ( exp `  A ) ) )
 
Theoremeff2 12066 The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
 |- 
 exp : CC --> ( CC  \  { 0 } )
 
Theoremefsub 12067 Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( A  -  B ) )  =  ( ( exp `  A )  /  ( exp `  B ) ) )
 
Theoremefexp 12068 The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
 |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A ) )  =  ( ( exp `  A ) ^ N ) )
 
Theoremefzval 12069 Value of the exponential function for integers. Special case of efval 12047. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
 |-  ( N  e.  ZZ  ->  ( exp `  N )  =  ( _e ^ N ) )
 
Theoremefgt0 12070 The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  RR  ->  0  <  ( exp `  A ) )
 
Theoremrpefcl 12071 The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  RR  ->  ( exp `  A )  e.  RR+ )
 
Theoremrpefcld 12072 The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( exp `  A )  e.  RR+ )
 
Theoremeftlcvg 12073* The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
Theoremeftlcl 12074* Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  sum_ k  e.  ( ZZ>=
 `  M ) ( F `  k )  e.  CC )
 
Theoremreeftlcl 12075* Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( ( A  e.  RR  /\  M  e.  NN0 )  ->  sum_ k  e.  ( ZZ>=
 `  M ) ( F `  k )  e.  RR )
 
Theoremeftlub 12076* An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  G  =  ( n  e.  NN0  |->  ( ( ( abs `  A ) ^ n )  /  ( ! `  n ) ) )   &    |-  H  =  ( n  e.  NN0  |->  ( ( ( ( abs `  A ) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  /  ( M  +  1 ) ) ^ n ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <_ 
 1 )   =>    |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>=
 `  M ) ( F `  k ) )  <_  ( (
 ( abs `  A ) ^ M )  x.  (
 ( M  +  1 )  /  ( ( ! `  M )  x.  M ) ) ) )
 
Theoremefsep 12077* Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  N  =  ( M  +  1 )   &    |-  M  e.  NN0   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( exp `  A )  =  ( B  +  sum_ k  e.  ( ZZ>=
 `  M ) ( F `  k ) ) )   &    |-  ( ph  ->  ( B  +  ( ( A ^ M ) 
 /  ( ! `  M ) ) )  =  D )   =>    |-  ( ph  ->  ( exp `  A )  =  ( D  +  sum_ k  e.  ( ZZ>= `  N ) ( F `  k ) ) )
 
Theoremeffsumlt 12078* The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  (  seq 0 (  +  ,  F ) `  N )  <  ( exp `  A ) )
 
Theoremeft0val 12079 The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  ( A  e.  CC  ->  ( ( A ^
 0 )  /  ( ! `  0 ) )  =  1 )
 
Theoremef4p 12080* Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  e.  CC  ->  ( exp `  A )  =  ( (
 ( ( 1  +  A )  +  (
 ( A ^ 2
 )  /  2 )
 )  +  ( ( A ^ 3 ) 
 /  6 ) )  +  sum_ k  e.  ( ZZ>=
 `  4 ) ( F `  k ) ) )
 
Theoremefgt1p2 12081 The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  RR+  ->  ( ( 1  +  A )  +  (
 ( A ^ 2
 )  /  2 )
 )  <  ( exp `  A ) )
 
Theoremefgt1p 12082 The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  RR+  ->  ( 1  +  A )  <  ( exp `  A ) )
 
Theoremefgt1 12083 The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  RR+  -> 
 1  <  ( exp `  A ) )
 
Theoremefltim 12084 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 20-Dec-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B 
 ->  ( exp `  A )  <  ( exp `  B ) ) )
 
Theoremreef11 12085 The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( exp `  A )  =  ( exp `  B )  <->  A  =  B ) )
 
Theoremreeff1 12086 The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( exp  |`  RR ) : RR -1-1-> RR+
 
Theoremeflegeo 12087 The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A  <  1 )   =>    |-  ( ph  ->  ( exp `  A )  <_  ( 1  /  (
 1  -  A ) ) )
 
Theoremsinval 12088 Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  CC  ->  ( sin `  A )  =  ( (
 ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) 
 /  ( 2  x.  _i ) ) )
 
Theoremcosval 12089 Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  CC  ->  ( cos `  A )  =  ( (
 ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) 
 /  2 ) )
 
Theoremsinf 12090 Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |- 
 sin : CC --> CC
 
Theoremcosf 12091 Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |- 
 cos : CC --> CC
 
Theoremsincl 12092 Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
 
Theoremcoscl 12093 Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
 
Theoremtanvalap 12094 Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
 |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A )  /  ( cos `  A ) ) )
 
Theoremtanclap 12095 The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
 |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  e. 
 CC )
 
Theoremsincld 12096 Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( sin `  A )  e. 
 CC )
 
Theoremcoscld 12097 Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( cos `  A )  e. 
 CC )
 
Theoremtanclapd 12098 Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( cos `  A ) #  0 )   =>    |-  ( ph  ->  ( tan `  A )  e. 
 CC )
 
Theoremtanval2ap 12099 Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
 |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) 
 /  ( _i  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
 
Theoremtanval3ap 12100 Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
 |-  ( ( A  e.  CC  /\  ( ( exp `  ( 2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( 2  x.  ( _i  x.  A ) ) )  -  1 ) 
 /  ( _i  x.  ( ( exp `  (
 2  x.  ( _i 
 x.  A ) ) )  +  1 ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >