HomeHome Intuitionistic Logic Explorer
Theorem List (p. 121 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12001-12100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremordvdsmul 12001 If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  \/  K  ||  N )  ->  K  ||  ( M  x.  N ) ) )
 
Theoremdvdssub2 12002 If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
 |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K 
 ||  M  <->  K  ||  N ) )
 
Theoremdvdsadd 12003 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( M  +  N ) ) )
 
Theoremdvdsaddr 12004 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( N  +  M ) ) )
 
Theoremdvdssub 12005 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( M  -  N ) ) )
 
Theoremdvdssubr 12006 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( N  -  M ) ) )
 
Theoremdvdsadd2b 12007 Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C )
 )  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) )
 
Theoremdvdsaddre2b 12008 Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 12007 only requiring  B to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C )
 )  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) )
 
Theoremfsumdvds 12009* If every term in a sum is divisible by  N, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  N  ||  B )   =>    |-  ( ph  ->  N  ||  sum_ k  e.  A  B )
 
Theoremdvdslelemd 12010 Lemma for dvdsle 12011. (Contributed by Jim Kingdon, 8-Nov-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( K  x.  M )  =/= 
 N )
 
Theoremdvdsle 12011 The divisors of a positive integer are bounded by it. The proof does not use  /. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  ||  N  ->  M  <_  N ) )
 
Theoremdvdsleabs 12012 The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in [ApostolNT] p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  ||  N  ->  M  <_  ( abs `  N ) ) )
 
Theoremdvdsleabs2 12013 Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  ||  N  ->  ( abs `  M )  <_  ( abs `  N ) ) )
 
Theoremdvdsabseq 12014 If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
 |-  ( ( M  ||  N  /\  N  ||  M )  ->  ( abs `  M )  =  ( abs `  N ) )
 
Theoremdvdseq 12015 If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.)
 |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M 
 ||  N  /\  N  ||  M ) )  ->  M  =  N )
 
Theoremdivconjdvds 12016 If a nonzero integer  M divides another integer  N, the other integer  N divided by the nonzero integer  M (i.e. the divisor conjugate of  N to  M) divides the other integer  N. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
 |-  ( ( M  ||  N  /\  M  =/=  0
 )  ->  ( N  /  M )  ||  N )
 
Theoremdvdsdivcl 12017* The complement of a divisor of  N is also a divisor of  N. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
 |-  ( ( N  e.  NN  /\  A  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  A )  e.  { x  e. 
 NN  |  x  ||  N } )
 
Theoremdvdsflip 12018* An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
 |-  A  =  { x  e.  NN  |  x  ||  N }   &    |-  F  =  ( y  e.  A  |->  ( N  /  y ) )   =>    |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
 
Theoremdvdsssfz1 12019* The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( A  e.  NN  ->  { p  e.  NN  |  p  ||  A }  C_  ( 1 ... A ) )
 
Theoremdvds1 12020 The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.)
 |-  ( M  e.  NN0  ->  ( M  ||  1  <->  M  =  1
 ) )
 
Theoremalzdvds 12021* Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( A. x  e. 
 ZZ  x  ||  N  <->  N  =  0 ) )
 
Theoremdvdsext 12022* Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( A  =  B  <->  A. x  e.  NN0  ( A  ||  x  <->  B  ||  x ) ) )
 
Theoremfzm1ndvds 12023 No number between  1 and  M  - 
1 divides  M. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  ( ( M  e.  NN  /\  N  e.  (
 1 ... ( M  -  1 ) ) ) 
 ->  -.  M  ||  N )
 
Theoremfzo0dvdseq 12024 Zero is the only one of the first 
A nonnegative integers that is divisible by  A. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( B  e.  (
 0..^ A )  ->  ( A  ||  B  <->  B  =  0
 ) )
 
Theoremfzocongeq 12025 Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( ( D  -  C )  ||  ( A  -  B )  <->  A  =  B ) )
 
TheoremaddmodlteqALT 12026 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10492 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
 
Theoremdvdsfac 12027 A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
 |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>=
 `  K ) ) 
 ->  K  ||  ( ! `  N ) )
 
Theoremdvdsexp 12028 A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  ->  ( A ^ M ) 
 ||  ( A ^ N ) )
 
Theoremdvdsmod 12029 Any number  K whose mod base  N is divisible by a divisor  P of the base is also divisible by 
P. This means that primes will also be relatively prime to the base when reduced  mod 
N for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P 
 ||  ( K  mod  N )  <->  P  ||  K ) )
 
Theoremmulmoddvds 12030 If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  ( ( A  x.  B )  mod  N )  =  0 ) )
 
Theorem3dvds 12031* A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
 |-  ( ( N  e.  NN0  /\  F : ( 0
 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `
  k )  x.  (; 1 0 ^ k
 ) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
 
Theorem3dvdsdec 12032 A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A and  B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A and  B, especially if  A is itself a decimal number, e.g.,  A  = ; C D. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |-  ( 3  || ; A B  <->  3  ||  ( A  +  B )
 )
 
Theorem3dvds2dec 12033 A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A,  B and  C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A,  B and  C. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   =>    |-  ( 3  || ;; A B C  <->  3  ||  (
 ( A  +  B )  +  C )
 )
 
5.1.2  Even and odd numbers

The set  ZZ of integers can be partitioned into the set of even numbers and the set of odd numbers, see zeo4 12037. Instead of defining new class variables Even and Odd to represent these sets, we use the idiom  2 
||  N to say that " N is even" (which implies  N  e.  ZZ, see evenelz 12034) and  -.  2  ||  N to say that " N is odd" (under the assumption that  N  e.  ZZ). The previously proven theorems about even and odd numbers, like zneo 9429, zeo 9433, zeo2 9434, etc. use different representations, which are equivalent with the representations using the divides relation, see evend2 12056 and oddp1d2 12057. The corresponding theorems are zeneo 12038, zeo3 12035 and zeo4 12037.

 
Theoremevenelz 12034 An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11959. (Contributed by AV, 22-Jun-2021.)
 |-  ( 2  ||  N  ->  N  e.  ZZ )
 
Theoremzeo3 12035 An integer is even or odd. (Contributed by AV, 17-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  \/  -.  2  ||  N ) )
 
Theoremzeoxor 12036 An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  \/_  -.  2  ||  N ) )
 
Theoremzeo4 12037 An integer is even or odd but not both. (Contributed by AV, 17-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  <->  -. 
 -.  2  ||  N ) )
 
Theoremzeneo 12038 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9429 follows immediately from the fact that a contradiction implies anything, see pm2.21i 647. (Contributed by AV, 22-Jun-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2 
 ||  A  /\  -.  2  ||  B )  ->  A  =/=  B ) )
 
Theoremodd2np1lem 12039* Lemma for odd2np1 12040. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
 k  x.  2 )  =  N ) )
 
Theoremodd2np1 12040* An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <-> 
 E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
 
Theoremeven2n 12041* An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.)
 |-  ( 2  ||  N  <->  E. n  e.  ZZ  (
 2  x.  n )  =  N )
 
Theoremoddm1even 12042 An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  2  ||  ( N  -  1 ) ) )
 
Theoremoddp1even 12043 An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  2  ||  ( N  +  1 ) ) )
 
Theoremoexpneg 12044 The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
 |-  ( ( A  e.  CC  /\  N  e.  NN  /\ 
 -.  2  ||  N )  ->  ( -u A ^ N )  =  -u ( A ^ N ) )
 
Theoremmod2eq0even 12045 An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
 |-  ( N  e.  ZZ  ->  ( ( N  mod  2 )  =  0  <->  2 
 ||  N ) )
 
Theoremmod2eq1n2dvds 12046 An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
 |-  ( N  e.  ZZ  ->  ( ( N  mod  2 )  =  1  <->  -.  2  ||  N )
 )
 
Theoremoddnn02np1 12047* A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
 |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  (
 ( 2  x.  n )  +  1 )  =  N ) )
 
Theoremoddge22np1 12048* An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  ( -.  2  ||  N  <->  E. n  e.  NN  (
 ( 2  x.  n )  +  1 )  =  N ) )
 
Theoremevennn02n 12049* A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
 |-  ( N  e.  NN0  ->  ( 2  ||  N  <->  E. n  e.  NN0  (
 2  x.  n )  =  N ) )
 
Theoremevennn2n 12050* A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
 |-  ( N  e.  NN  ->  ( 2  ||  N  <->  E. n  e.  NN  (
 2  x.  n )  =  N ) )
 
Theorem2tp1odd 12051 A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  =  ( ( 2  x.  A )  +  1 )
 )  ->  -.  2  ||  B )
 
Theoremmulsucdiv2z 12052 An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
 |-  ( N  e.  ZZ  ->  ( ( N  x.  ( N  +  1
 ) )  /  2
 )  e.  ZZ )
 
Theoremsqoddm1div8z 12053 A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( ( N ^ 2
 )  -  1 ) 
 /  8 )  e. 
 ZZ )
 
Theorem2teven 12054 A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  =  ( 2  x.  A ) )  ->  2  ||  B )
 
Theoremzeo5 12055 An integer is either even or odd, version of zeo3 12035 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  \/  2  ||  ( N  +  1 ) ) )
 
Theoremevend2 12056 An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 9433 and zeo2 9434. (Contributed by AV, 22-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  <->  ( N  /  2 )  e.  ZZ ) )
 
Theoremoddp1d2 12057 An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 9433 and zeo2 9434. (Contributed by AV, 22-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theoremzob 12058 Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.)
 |-  ( N  e.  ZZ  ->  ( ( ( N  +  1 )  / 
 2 )  e.  ZZ  <->  (
 ( N  -  1
 )  /  2 )  e.  ZZ ) )
 
Theoremoddm1d2 12059 An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  ( ( N  -  1 )  /  2
 )  e.  ZZ )
 )
 
Theoremltoddhalfle 12060 An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  / 
 2 ) ) )
 
Theoremhalfleoddlt 12061 An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N 
 /  2 )  <_  M 
 <->  ( N  /  2
 )  <  M )
 )
 
Theoremopoe 12062 The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  -.  2  ||  A )  /\  ( B  e.  ZZ  /\ 
 -.  2  ||  B ) )  ->  2  ||  ( A  +  B ) )
 
Theoremomoe 12063 The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  -.  2  ||  A )  /\  ( B  e.  ZZ  /\ 
 -.  2  ||  B ) )  ->  2  ||  ( A  -  B ) )
 
Theoremopeo 12064 The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  -.  2  ||  A )  /\  ( B  e.  ZZ  /\  2  ||  B )
 )  ->  -.  2  ||  ( A  +  B ) )
 
Theoremomeo 12065 The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  -.  2  ||  A )  /\  ( B  e.  ZZ  /\  2  ||  B )
 )  ->  -.  2  ||  ( A  -  B ) )
 
Theoremm1expe 12066 Exponentiation of -1 by an even power. Variant of m1expeven 10680. (Contributed by AV, 25-Jun-2021.)
 |-  ( 2  ||  N  ->  ( -u 1 ^ N )  =  1 )
 
Theoremm1expo 12067 Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( -u 1 ^ N )  =  -u 1 )
 
Theoremm1exp1 12068 Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( ( -u 1 ^ N )  =  1  <-> 
 2  ||  N )
 )
 
Theoremnn0enne 12069 A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
 |-  ( N  e.  NN  ->  ( ( N  / 
 2 )  e.  NN0  <->  ( N  /  2 )  e. 
 NN ) )
 
Theoremnn0ehalf 12070 The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.)
 |-  ( ( N  e.  NN0  /\  2  ||  N ) 
 ->  ( N  /  2
 )  e.  NN0 )
 
Theoremnnehalf 12071 The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.)
 |-  ( ( N  e.  NN  /\  2  ||  N )  ->  ( N  / 
 2 )  e.  NN )
 
Theoremnn0o1gt2 12072 An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
 |-  ( ( N  e.  NN0  /\  ( ( N  +  1 )  /  2
 )  e.  NN0 )  ->  ( N  =  1  \/  2  <  N ) )
 
Theoremnno 12073 An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
 |-  ( ( N  e.  ( ZZ>= `  2 )  /\  ( ( N  +  1 )  /  2
 )  e.  NN0 )  ->  ( ( N  -  1 )  /  2
 )  e.  NN )
 
Theoremnn0o 12074 An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
 |-  ( ( N  e.  NN0  /\  ( ( N  +  1 )  /  2
 )  e.  NN0 )  ->  ( ( N  -  1 )  /  2
 )  e.  NN0 )
 
Theoremnn0ob 12075 Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
 |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
 2 )  e.  NN0  <->  (
 ( N  -  1
 )  /  2 )  e.  NN0 ) )
 
Theoremnn0oddm1d2 12076 A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
 |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  ( ( N  -  1
 )  /  2 )  e.  NN0 ) )
 
Theoremnnoddm1d2 12077 A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
 |-  ( N  e.  NN  ->  ( -.  2  ||  N 
 <->  ( ( N  +  1 )  /  2
 )  e.  NN )
 )
 
Theoremz0even 12078 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.)
 |-  2  ||  0
 
Theoremn2dvds1 12079 2 does not divide 1 (common case). That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- 
 -.  2  ||  1
 
Theoremn2dvdsm1 12080 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.)
 |- 
 -.  2  ||  -u 1
 
Theoremz2even 12081 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.)
 |-  2  ||  2
 
Theoremn2dvds3 12082 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.)
 |- 
 -.  2  ||  3
 
Theoremz4even 12083 4 is an even number. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.)
 |-  2  ||  4
 
Theorem4dvdseven 12084 An integer which is divisible by 4 is an even integer. (Contributed by AV, 4-Jul-2021.)
 |-  ( 4  ||  N  ->  2  ||  N )
 
5.1.3  The division algorithm
 
Theoremdivalglemnn 12085* Lemma for divalg 12091. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalglemqt 12086 Lemma for divalg 12091. The  Q  =  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
 |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  R  e.  ZZ )   &    |-  ( ph  ->  S  e.  ZZ )   &    |-  ( ph  ->  Q  e.  ZZ )   &    |-  ( ph  ->  T  e.  ZZ )   &    |-  ( ph  ->  Q  =  T )   &    |-  ( ph  ->  (
 ( Q  x.  D )  +  R )  =  ( ( T  x.  D )  +  S ) )   =>    |-  ( ph  ->  R  =  S )
 
Theoremdivalglemnqt 12087 Lemma for divalg 12091. The  Q  <  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
 |-  ( ph  ->  D  e.  NN )   &    |-  ( ph  ->  R  e.  ZZ )   &    |-  ( ph  ->  S  e.  ZZ )   &    |-  ( ph  ->  Q  e.  ZZ )   &    |-  ( ph  ->  T  e.  ZZ )   &    |-  ( ph  ->  0  <_  S )   &    |-  ( ph  ->  R  <  D )   &    |-  ( ph  ->  ( ( Q  x.  D )  +  R )  =  ( ( T  x.  D )  +  S ) )   =>    |-  ( ph  ->  -.  Q  <  T )
 
Theoremdivalglemeunn 12088* Lemma for divalg 12091. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e. 
 ZZ  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r
 ) ) )
 
Theoremdivalglemex 12089* Lemma for divalg 12091. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 ) 
 ->  E. r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalglemeuneg 12090* Lemma for divalg 12091. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 ) 
 ->  E! r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalg 12091* The division algorithm (theorem). Dividing an integer  N by a nonzero integer  D produces a (unique) quotient  q and a unique remainder  0  <_  r  <  ( abs `  D
). Theorem 1.14 in [ApostolNT] p. 19. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 ) 
 ->  E! r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalgb 12092* Express the division algorithm as stated in divalg 12091 in terms of  ||. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 ) 
 ->  ( E! r  e. 
 ZZ  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r
 ) )  <->  E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r
 ) ) ) )
 
Theoremdivalg2 12093* The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e. 
 NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
 
Theoremdivalgmod 12094 The result of the  mod operator satisfies the requirements for the remainder  R in the division algorithm for a positive divisor (compare divalg2 12093 and divalgb 12092). This demonstration theorem justifies the use of  mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
 ( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R ) ) ) ) )
 
Theoremdivalgmodcl 12095 The result of the  mod operator satisfies the requirements for the remainder  R in the division algorithm for a positive divisor. Variant of divalgmod 12094. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  R  e.  NN0 )  ->  ( R  =  ( N  mod  D )  <-> 
 ( R  <  D  /\  D  ||  ( N  -  R ) ) ) )
 
Theoremmodremain 12096* The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( R  e.  NN0  /\  R  <  D ) )  ->  ( ( N  mod  D )  =  R  <->  E. z  e.  ZZ  ( ( z  x.  D )  +  R )  =  N )
 )
 
Theoremndvdssub 12097 Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  -  1,  N  -  2...  N  -  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  ||  N  ->  -.  D  ||  ( N  -  K ) ) )
 
Theoremndvdsadd 12098 Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  +  1,  N  +  2...  N  +  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  ||  N  ->  -.  D  ||  ( N  +  K ) ) )
 
Theoremndvdsp1 12099 Special case of ndvdsadd 12098. If an integer  D greater than  1 divides  N, it does not divide  N  +  1. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  1  <  D ) 
 ->  ( D  ||  N  ->  -.  D  ||  ( N  +  1 )
 ) )
 
Theoremndvdsi 12100 A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN   &    |-  Q  e.  NN0   &    |-  R  e.  NN   &    |-  (
 ( A  x.  Q )  +  R )  =  B   &    |-  R  <  A   =>    |-  -.  A  ||  B
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15738
  Copyright terms: Public domain < Previous  Next >