HomeHome Intuitionistic Logic Explorer
Theorem List (p. 121 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12001-12100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-ndx 12001 Define the structure component index extractor. See theorem ndxarg 12021 to understand its purpose. The restriction to  NN ensures that  ndx is a set. The restriction to some set is necessary since  _I is a proper class. In principle, we could have chosen  CC or (if we revise all structure component definitions such as df-base 12004) another set such as the set of finite ordinals 
om (df-iom 4513). (Contributed by NM, 4-Sep-2011.)
 |- 
 ndx  =  (  _I  |` 
 NN )
 
Definitiondf-slot 12002* Define the slot extractor for extensible structures. The class Slot  A is a function whose argument can be any set, although it is meaningful only if that set is a member of an extensible structure (such as a partially ordered set or a group).

Note that Slot  A is implemented as "evaluation at  A". That is,  (Slot  A `  S ) is defined to be  ( S `  A ), where  A will typically be a small nonzero natural number. Each extensible structure  S is a function defined on specific natural number "slots", and this function extracts the value at a particular slot.

The special "structure"  ndx, defined as the identity function restricted to  NN, can be used to extract the number  A from a slot, since  (Slot  A `  ndx )  =  A (see ndxarg 12021). This is typically used to refer to the number of a slot when defining structures without having to expose the detail of what that number is (for instance, we use the expression  ( Base `  ndx ) in theorems and proofs instead of its value 1).

The class Slot cannot be defined as  ( x  e.  _V  |->  ( f  e. 
_V  |->  ( f `  x ) ) ) because each Slot  A is a function on the proper class  _V so is itself a proper class, and the values of functions are sets (fvex 5449). It is necessary to allow proper classes as values of Slot  A since for instance the class of all (base sets of) groups is proper. (Contributed by Mario Carneiro, 22-Sep-2015.)

 |- Slot  A  =  ( x  e.  _V  |->  ( x `  A ) )
 
Theoremsloteq 12003 Equality theorem for the Slot construction. The converse holds if  A (or  B) is a set. (Contributed by BJ, 27-Dec-2021.)
 |-  ( A  =  B  -> Slot 
 A  = Slot  B )
 
Definitiondf-base 12004 Define the base set (also called underlying set, ground set, carrier set, or carrier) extractor for extensible structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 Base  = Slot  1
 
Definitiondf-sets 12005* Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 12006 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. (Contributed by Mario Carneiro, 1-Dec-2014.)
 |- sSet  =  ( s  e.  _V ,  e  e.  _V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u. 
 { e } )
 )
 
Definitiondf-ress 12006* Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the  Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.)

 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  if ( ( Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base ` 
 ndx ) ,  ( x  i^i  ( Base `  w ) ) >. ) ) )
 
Theorembrstruct 12007 The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |- 
 Rel Struct
 
Theoremisstruct2im 12008 The property of being a structure with components in  ( 1st `  X
) ... ( 2nd `  X
). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
 |-  ( F Struct  X  ->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) )
 
Theoremisstruct2r 12009 The property of being a structure with components in  ( 1st `  X
) ... ( 2nd `  X
). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
 |-  ( ( ( X  e.  (  <_  i^i  ( NN  X.  NN )
 )  /\  Fun  ( F 
 \  { (/) } )
 )  /\  ( F  e.  V  /\  dom  F  C_  ( ... `  X ) ) )  ->  F Struct  X )
 
Theoremstructex 12010 A structure is a set. (Contributed by AV, 10-Nov-2021.)
 |-  ( G Struct  X  ->  G  e.  _V )
 
Theoremstructn0fun 12011 A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.)
 |-  ( F Struct  X  ->  Fun  ( F  \  { (/)
 } ) )
 
Theoremisstructim 12012 The property of being a structure with components in  M ... N. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
 |-  ( F Struct  <. M ,  N >.  ->  ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( M ... N ) ) )
 
Theoremisstructr 12013 The property of being a structure with components in  M ... N. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
 |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  ( Fun  ( F  \  { (/)
 } )  /\  F  e.  V  /\  dom  F  C_  ( M ... N ) ) )  ->  F Struct 
 <. M ,  N >. )
 
Theoremstructcnvcnv 12014 Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  ( F Struct  X  ->  `' `' F  =  ( F  \  { (/) } )
 )
 
Theoremstructfung 12015 The converse of the converse of a structure is a function. Closed form of structfun 12016. (Contributed by AV, 12-Nov-2021.)
 |-  ( F Struct  X  ->  Fun  `' `' F )
 
Theoremstructfun 12016 Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof shortened by AV, 12-Nov-2021.)
 |-  F Struct  X   =>    |- 
 Fun  `' `' F
 
Theoremstructfn 12017 Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  F Struct  <. M ,  N >.   =>    |-  ( Fun  `' `' F  /\  dom  F  C_  (
 1 ... N ) )
 
Theoremstrnfvnd 12018 Deduction version of strnfvn 12019. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
 |-  E  = Slot  N   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( E `  S )  =  ( S `  N ) )
 
Theoremstrnfvn 12019 Value of a structure component extractor  E. Normally,  E is a defined constant symbol such as  Base (df-base 12004) and  N is a fixed integer such as  1.  S is a structure, i.e. a specific member of a class of structures.

Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12042. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.)

 |-  S  e.  _V   &    |-  E  = Slot  N   &    |-  N  e.  NN   =>    |-  ( E `  S )  =  ( S `  N )
 
Theoremstrfvssn 12020 A structure component extractor produces a value which is contained in a set dependent on  S, but not  E. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
 |-  E  = Slot  N   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( E `  S )  C_  U.
 ran  S )
 
Theoremndxarg 12021 Get the numeric argument from a defined structure component extractor such as df-base 12004. (Contributed by Mario Carneiro, 6-Oct-2013.)
 |-  E  = Slot  N   &    |-  N  e.  NN   =>    |-  ( E `  ndx )  =  N
 
Theoremndxid 12022 A structure component extractor is defined by its own index. This theorem, together with strslfv 12042 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the  1 in df-base 12004, making it easier to change should the need arise.

(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

 |-  E  = Slot  N   &    |-  N  e.  NN   =>    |-  E  = Slot  ( E `
  ndx )
 
Theoremndxslid 12023 A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12042. (Contributed by Jim Kingdon, 29-Jan-2023.)
 |-  E  = Slot  N   &    |-  N  e.  NN   =>    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
 
Theoremslotslfn 12024 A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   =>    |-  E  Fn  _V
 
Theoremslotex 12025 Existence of slot value. A corollary of slotslfn 12024. (Contributed by Jim Kingdon, 12-Feb-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   =>    |-  ( A  e.  V  ->  ( E `  A )  e.  _V )
 
Theoremstrndxid 12026 The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.)
 |-  ( ph  ->  S  e.  V )   &    |-  E  = Slot  N   &    |-  N  e.  NN   =>    |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  ( E `  S ) )
 
Theoremreldmsets 12027 The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.)
 |- 
 Rel  dom sSet
 
Theoremsetsvalg 12028 Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
 ) )
 
Theoremsetsvala 12029 Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 20-Jan-2023.)
 |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W ) 
 ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  { A } )
 )  u.  { <. A ,  B >. } )
 )
 
Theoremsetsex 12030 Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
 |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W ) 
 ->  ( S sSet  <. A ,  B >. )  e.  _V )
 
Theoremstrsetsid 12031 Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  E  = Slot  ( E `
  ndx )   &    |-  ( ph  ->  S Struct  <. M ,  N >. )   &    |-  ( ph  ->  Fun  S )   &    |-  ( ph  ->  ( E ` 
 ndx )  e.  dom  S )   =>    |-  ( ph  ->  S  =  ( S sSet  <. ( E `
  ndx ) ,  ( E `  S ) >. ) )
 
Theoremfvsetsid 12032 The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
 |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U ) 
 ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  Y )
 
Theoremsetsfun 12033 A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.)
 |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( G sSet  <. I ,  E >. ) )
 
Theoremsetsfun0 12034 A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12033 is useful for proofs based on isstruct2r 12009 which requires  Fun  ( F 
\  { (/) } ) for 
F to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
 |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )
 )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/)
 } ) )
 
Theoremsetsn0fun 12035 The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
 |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  I  e.  U )   &    |-  ( ph  ->  E  e.  W )   =>    |-  ( ph  ->  Fun  (
 ( S sSet  <. I ,  E >. )  \  { (/)
 } ) )
 
Theoremsetsresg 12036 The structure replacement function does not affect the value of  S away from  A. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
 |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X ) 
 ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } )
 )  =  ( S  |`  ( _V  \  { A } ) ) )
 
Theoremsetsabsd 12037 Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
 |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  A  e.  W )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  U )   =>    |-  ( ph  ->  (
 ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. ) )
 
Theoremsetscom 12038 Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( ( S  e.  V  /\  A  =/=  B )  /\  ( C  e.  W  /\  D  e.  X )
 )  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
 
Theoremstrslfvd 12039 Deduction version of strslfv 12042. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  Fun  S )   &    |-  ( ph  ->  <. ( E `  ndx ) ,  C >.  e.  S )   =>    |-  ( ph  ->  C  =  ( E `  S ) )
 
Theoremstrslfv2d 12040 Deduction version of strslfv 12042. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  Fun  `' `' S )   &    |-  ( ph  ->  <.
 ( E `  ndx ) ,  C >.  e.  S )   &    |-  ( ph  ->  C  e.  W )   =>    |-  ( ph  ->  C  =  ( E `  S ) )
 
Theoremstrslfv2 12041 A variation on strslfv 12042 to avoid asserting that  S itself is a function, which involves sethood of all the ordered pair components of  S. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  S  e.  _V   &    |-  Fun  `' `' S   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  <. ( E `
  ndx ) ,  C >.  e.  S   =>    |-  ( C  e.  V  ->  C  =  ( E `
  S ) )
 
Theoremstrslfv 12042 Extract a structure component  C (such as the base set) from a structure  S with a component extractor  E (such as the base set extractor df-base 12004). By virtue of ndxslid 12023, this can be done without having to refer to the hard-coded numeric index of  E. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  S Struct  X   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  { <. ( E `  ndx ) ,  C >. }  C_  S   =>    |-  ( C  e.  V  ->  C  =  ( E `  S ) )
 
Theoremstrslfv3 12043 Variant on strslfv 12042 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  ( ph  ->  U  =  S )   &    |-  S Struct  X   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  { <. ( E `  ndx ) ,  C >. }  C_  S   &    |-  ( ph  ->  C  e.  V )   &    |-  A  =  ( E `
  U )   =>    |-  ( ph  ->  A  =  C )
 
Theoremstrslssd 12044 Deduction version of strslss 12045. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  T  e.  V )   &    |-  ( ph  ->  Fun  T )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ph  ->  <. ( E `
  ndx ) ,  C >.  e.  S )   =>    |-  ( ph  ->  ( E `  T )  =  ( E `  S ) )
 
Theoremstrslss 12045 Propagate component extraction to a structure  T from a subset structure  S. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.)
 |-  T  e.  _V   &    |-  Fun  T   &    |-  S  C_  T   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  <. ( E `
  ndx ) ,  C >.  e.  S   =>    |-  ( E `  T )  =  ( E `  S )
 
Theoremstrsl0 12046 All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   =>    |-  (/)  =  ( E `  (/) )
 
Theorembase0 12047 The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  (/)  =  ( Base `  (/) )
 
Theoremsetsslid 12048 Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   =>    |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  =  ( E `  ( W sSet  <. ( E `  ndx ) ,  C >. ) ) )
 
Theoremsetsslnid 12049 Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( E `  ndx )  =/=  D   &    |-  D  e.  NN   =>    |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  W )  =  ( E `  ( W sSet  <. D ,  C >. ) ) )
 
Theorembaseval 12050 Value of the base set extractor. (Normally it is preferred to work with  ( Base `  ndx ) rather than the hard-coded  1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
 |-  K  e.  _V   =>    |-  ( Base `  K )  =  ( K `  1 )
 
Theorembaseid 12051 Utility theorem: index-independent form of df-base 12004. (Contributed by NM, 20-Oct-2012.)
 |- 
 Base  = Slot  ( Base `  ndx )
 
Theorembasendx 12052 Index value of the base set extractor. (Normally it is preferred to work with  ( Base `  ndx ) rather than the hard-coded  1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.)
 |-  ( Base `  ndx )  =  1
 
Theorembasendxnn 12053 The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.)
 |-  ( Base `  ndx )  e. 
 NN
 
Theorembaseslid 12054 The base set extractor is a slot. (Contributed by Jim Kingdon, 31-Jan-2023.)
 |-  ( Base  = Slot  ( Base ` 
 ndx )  /\  ( Base `  ndx )  e. 
 NN )
 
Theorembasfn 12055 The base set extractor is a function on  _V. (Contributed by Stefan O'Rear, 8-Jul-2015.)
 |- 
 Base  Fn  _V
 
Theoremreldmress 12056 The structure restriction is a proper operator, so it can be used with ovprc1 5815. (Contributed by Stefan O'Rear, 29-Nov-2014.)
 |- 
 Rel  doms
 
Theoremressid2 12057 General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 26-Jan-2023.)
 |-  R  =  ( Ws  A )   &    |-  B  =  (
 Base `  W )   =>    |-  ( ( B 
 C_  A  /\  W  e.  X  /\  A  e.  Y )  ->  R  =  W )
 
Theoremressval2 12058 Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
 |-  R  =  ( Ws  A )   &    |-  B  =  (
 Base `  W )   =>    |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y )  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. ) )
 
Theoremressid 12059 Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
 |-  B  =  ( Base `  W )   =>    |-  ( W  e.  X  ->  ( Ws  B )  =  W )
 
6.1.2  Slot definitions
 
Syntaxcplusg 12060 Extend class notation with group (addition) operation.
 class  +g
 
Syntaxcmulr 12061 Extend class notation with ring multiplication.
 class  .r
 
Syntaxcstv 12062 Extend class notation with involution.
 class  *r
 
Syntaxcsca 12063 Extend class notation with scalar field.
 class Scalar
 
Syntaxcvsca 12064 Extend class notation with scalar product.
 class  .s
 
Syntaxcip 12065 Extend class notation with Hermitian form (inner product).
 class  .i
 
Syntaxcts 12066 Extend class notation with the topology component of a topological space.
 class TopSet
 
Syntaxcple 12067 Extend class notation with "less than or equal to" for posets.
 class  le
 
Syntaxcoc 12068 Extend class notation with the class of orthocomplementation extractors.
 class  oc
 
Syntaxcds 12069 Extend class notation with the metric space distance function.
 class  dist
 
Syntaxcunif 12070 Extend class notation with the uniform structure.
 class  UnifSet
 
Syntaxchom 12071 Extend class notation with the hom-set structure.
 class  Hom
 
Syntaxcco 12072 Extend class notation with the composition operation.
 class comp
 
Definitiondf-plusg 12073 Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 +g  = Slot  2
 
Definitiondf-mulr 12074 Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 .r  = Slot  3
 
Definitiondf-starv 12075 Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  *r  = Slot  4
 
Definitiondf-sca 12076 Define scalar field component of a vector space  v. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- Scalar  = Slot  5
 
Definitiondf-vsca 12077 Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 .s  = Slot  6
 
Definitiondf-ip 12078 Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 .i  = Slot  8
 
Definitiondf-tset 12079 Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- TopSet  = Slot  9
 
Definitiondf-ple 12080 Define "less than or equal to" ordering extractor for posets and related structures. We use ; 1 0 for the index to avoid conflict with  1 through  9 used for other purposes. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
 |- 
 le  = Slot ; 1 0
 
Definitiondf-ocomp 12081 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 oc  = Slot ; 1 1
 
Definitiondf-ds 12082 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 dist  = Slot ; 1 2
 
Definitiondf-unif 12083 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |- 
 UnifSet  = Slot ; 1 3
 
Definitiondf-hom 12084 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- 
 Hom  = Slot ; 1 4
 
Definitiondf-cco 12085 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- comp  = Slot ; 1
 5
 
Theoremstrleund 12086 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  ( ph  ->  F Struct  <. A ,  B >. )   &    |-  ( ph  ->  G Struct  <. C ,  D >. )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  ( F  u.  G ) Struct  <. A ,  D >. )
 
Theoremstrleun 12087 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  F Struct  <. A ,  B >.   &    |-  G Struct 
 <. C ,  D >.   &    |-  B  <  C   =>    |-  ( F  u.  G ) Struct 
 <. A ,  D >.
 
Theoremstrle1g 12088 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  I  e.  NN   &    |-  A  =  I   =>    |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
 
Theoremstrle2g 12089 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  I  e.  NN   &    |-  A  =  I   &    |-  I  <  J   &    |-  J  e.  NN   &    |-  B  =  J   =>    |-  (
 ( X  e.  V  /\  Y  e.  W ) 
 ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
 
Theoremstrle3g 12090 Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  I  e.  NN   &    |-  A  =  I   &    |-  I  <  J   &    |-  J  e.  NN   &    |-  B  =  J   &    |-  J  <  K   &    |-  K  e.  NN   &    |-  C  =  K   =>    |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P ) 
 ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )
 
Theoremplusgndx 12091 Index value of the df-plusg 12073 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( +g  `  ndx )  =  2
 
Theoremplusgid 12092 Utility theorem: index-independent form of df-plusg 12073. (Contributed by NM, 20-Oct-2012.)
 |- 
 +g  = Slot  ( +g  ` 
 ndx )
 
Theoremplusgslid 12093 Slot property of  +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
 |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e. 
 NN )
 
Theoremopelstrsl 12094 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  <. ( E `  ndx ) ,  V >.  e.  S )   =>    |-  ( ph  ->  V  =  ( E `  S ) )
 
Theoremopelstrbas 12095 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
 |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  <. ( Base `  ndx ) ,  V >.  e.  S )   =>    |-  ( ph  ->  V  =  ( Base `  S )
 )
 
Theorem1strstrg 12096 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. }   =>    |-  ( B  e.  V  ->  G Struct  <. 1 ,  1
 >. )
 
Theorem1strbas 12097 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. }   =>    |-  ( B  e.  V  ->  B  =  ( Base `  G ) )
 
Theorem2strstrg 12098 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. 1 ,  N >. )
 
Theorem2strbasg 12099 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  B  =  ( Base `  G ) )
 
Theorem2stropg 12100 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  .+  =  ( E `
  G ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >