ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrlem1st Unicode version

Theorem ialgrlem1st 11974
Description: Lemma for ialgr0 11976. Expressing algrflemg 6198 in a form suitable for theorems such as seq3-1 10395 or seqf 10396. (Contributed by Jim Kingdon, 22-Jul-2021.)
Hypothesis
Ref Expression
ialgrlem1st.f  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
ialgrlem1st  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )

Proof of Theorem ialgrlem1st
StepHypRef Expression
1 algrflemg 6198 . . 3  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x ( F  o.  1st ) y )  =  ( F `
 x ) )
21adantl 275 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  =  ( F `
 x ) )
3 ialgrlem1st.f . . . 4  |-  ( ph  ->  F : S --> S )
43adantr 274 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  F : S --> S )
5 simprl 521 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
64, 5ffvelrnd 5621 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( F `  x
)  e.  S )
72, 6eqeltrd 2243 1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    o. ccom 4608   -->wf 5184   ` cfv 5188  (class class class)co 5842   1stc1st 6106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-ov 5845  df-1st 6108
This theorem is referenced by:  ialgr0  11976  algrp1  11978
  Copyright terms: Public domain W3C validator