ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrlem1st Unicode version

Theorem ialgrlem1st 12479
Description: Lemma for ialgr0 12481. Expressing algrflemg 6339 in a form suitable for theorems such as seq3-1 10644 or seqf 10646. (Contributed by Jim Kingdon, 22-Jul-2021.)
Hypothesis
Ref Expression
ialgrlem1st.f  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
ialgrlem1st  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )

Proof of Theorem ialgrlem1st
StepHypRef Expression
1 algrflemg 6339 . . 3  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x ( F  o.  1st ) y )  =  ( F `
 x ) )
21adantl 277 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  =  ( F `
 x ) )
3 ialgrlem1st.f . . . 4  |-  ( ph  ->  F : S --> S )
43adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  F : S --> S )
5 simprl 529 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
64, 5ffvelcdmd 5739 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( F `  x
)  e.  S )
72, 6eqeltrd 2284 1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    o. ccom 4697   -->wf 5286   ` cfv 5290  (class class class)co 5967   1stc1st 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-ov 5970  df-1st 6249
This theorem is referenced by:  ialgr0  12481  algrp1  12483
  Copyright terms: Public domain W3C validator