ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrlem1st Unicode version

Theorem ialgrlem1st 12009
Description: Lemma for ialgr0 12011. Expressing algrflemg 6221 in a form suitable for theorems such as seq3-1 10430 or seqf 10431. (Contributed by Jim Kingdon, 22-Jul-2021.)
Hypothesis
Ref Expression
ialgrlem1st.f  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
ialgrlem1st  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )

Proof of Theorem ialgrlem1st
StepHypRef Expression
1 algrflemg 6221 . . 3  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x ( F  o.  1st ) y )  =  ( F `
 x ) )
21adantl 277 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  =  ( F `
 x ) )
3 ialgrlem1st.f . . . 4  |-  ( ph  ->  F : S --> S )
43adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  F : S --> S )
5 simprl 529 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
64, 5ffvelcdmd 5644 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( F `  x
)  e.  S )
72, 6eqeltrd 2252 1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146    o. ccom 4624   -->wf 5204   ` cfv 5208  (class class class)co 5865   1stc1st 6129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fo 5214  df-fv 5216  df-ov 5868  df-1st 6131
This theorem is referenced by:  ialgr0  12011  algrp1  12013
  Copyright terms: Public domain W3C validator