| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn0z | Unicode version | ||
| Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0z.b |
|
| mulgnn0z.t |
|
| mulgnn0z.o |
|
| Ref | Expression |
|---|---|
| mulgnn0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9371 |
. 2
| |
| 2 | id 19 |
. . . . 5
| |
| 3 | mulgnn0z.b |
. . . . . 6
| |
| 4 | mulgnn0z.o |
. . . . . 6
| |
| 5 | 3, 4 | mndidcl 13463 |
. . . . 5
|
| 6 | eqid 2229 |
. . . . . 6
| |
| 7 | mulgnn0z.t |
. . . . . 6
| |
| 8 | eqid 2229 |
. . . . . 6
| |
| 9 | 3, 6, 7, 8 | mulgnn 13663 |
. . . . 5
|
| 10 | 2, 5, 9 | syl2anr 290 |
. . . 4
|
| 11 | 3, 6, 4 | mndlid 13468 |
. . . . . . 7
|
| 12 | 5, 11 | mpdan 421 |
. . . . . 6
|
| 13 | 12 | adantr 276 |
. . . . 5
|
| 14 | simpr 110 |
. . . . . 6
| |
| 15 | nnuz 9758 |
. . . . . 6
| |
| 16 | 14, 15 | eleqtrdi 2322 |
. . . . 5
|
| 17 | 5 | adantr 276 |
. . . . . 6
|
| 18 | elfznn 10250 |
. . . . . 6
| |
| 19 | fvconst2g 5853 |
. . . . . 6
| |
| 20 | 17, 18, 19 | syl2an 289 |
. . . . 5
|
| 21 | 15, 17 | ialgrlemconst 12565 |
. . . . 5
|
| 22 | 3, 6 | mndcl 13456 |
. . . . . . 7
|
| 23 | 22 | 3expb 1228 |
. . . . . 6
|
| 24 | 23 | adantlr 477 |
. . . . 5
|
| 25 | 13, 16, 20, 17, 21, 24 | seq3id3 10746 |
. . . 4
|
| 26 | 10, 25 | eqtrd 2262 |
. . 3
|
| 27 | oveq1 6008 |
. . . 4
| |
| 28 | 3, 4, 7 | mulg0 13662 |
. . . . 5
|
| 29 | 5, 28 | syl 14 |
. . . 4
|
| 30 | 27, 29 | sylan9eqr 2284 |
. . 3
|
| 31 | 26, 30 | jaodan 802 |
. 2
|
| 32 | 1, 31 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-minusg 13537 df-mulg 13657 |
| This theorem is referenced by: mulgz 13687 mulgnn0ass 13695 srg1expzeq1 13958 |
| Copyright terms: Public domain | W3C validator |