Step | Hyp | Ref
| Expression |
1 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
2 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
3 | 1, 2 | brcnv 4787 |
. . . . . . . . . 10
⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
4 | | 19.8a 1578 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥) → ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥)) |
5 | 3, 4 | sylan2br 286 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥𝑅𝑦) → ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥)) |
6 | 5 | ancoms 266 |
. . . . . . . 8
⊢ ((𝑥𝑅𝑦 ∧ 𝑦 ∈ 𝐵) → ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥)) |
7 | 6 | anim2i 340 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝑦 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥))) |
8 | | simprl 521 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝑦 ∧ 𝑦 ∈ 𝐵)) → 𝑥𝑅𝑦) |
9 | 7, 8 | jca 304 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝑦 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥)) ∧ 𝑥𝑅𝑦)) |
10 | 9 | anassrs 398 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ 𝑦 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥)) ∧ 𝑥𝑅𝑦)) |
11 | | elin 3305 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ 𝐵))) |
12 | 2 | elima2 4952 |
. . . . . . . 8
⊢ (𝑥 ∈ (◡𝑅 “ 𝐵) ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥)) |
13 | 12 | anbi2i 453 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥))) |
14 | 11, 13 | bitri 183 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥))) |
15 | 14 | anbi1i 454 |
. . . . 5
⊢ ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ 𝐵)) ∧ 𝑥𝑅𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑦◡𝑅𝑥)) ∧ 𝑥𝑅𝑦)) |
16 | 10, 15 | sylibr 133 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ 𝐵)) ∧ 𝑥𝑅𝑦)) |
17 | 16 | eximi 1588 |
. . 3
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ 𝑦 ∈ 𝐵) → ∃𝑥(𝑥 ∈ (𝐴 ∩ (◡𝑅 “ 𝐵)) ∧ 𝑥𝑅𝑦)) |
18 | 1 | elima2 4952 |
. . . . 5
⊢ (𝑦 ∈ (𝑅 “ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
19 | 18 | anbi1i 454 |
. . . 4
⊢ ((𝑦 ∈ (𝑅 “ 𝐴) ∧ 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ 𝑦 ∈ 𝐵)) |
20 | | elin 3305 |
. . . 4
⊢ (𝑦 ∈ ((𝑅 “ 𝐴) ∩ 𝐵) ↔ (𝑦 ∈ (𝑅 “ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
21 | | 19.41v 1890 |
. . . 4
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ 𝑦 ∈ 𝐵)) |
22 | 19, 20, 21 | 3bitr4i 211 |
. . 3
⊢ (𝑦 ∈ ((𝑅 “ 𝐴) ∩ 𝐵) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ 𝑦 ∈ 𝐵)) |
23 | 1 | elima2 4952 |
. . 3
⊢ (𝑦 ∈ (𝑅 “ (𝐴 ∩ (◡𝑅 “ 𝐵))) ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ (◡𝑅 “ 𝐵)) ∧ 𝑥𝑅𝑦)) |
24 | 17, 22, 23 | 3imtr4i 200 |
. 2
⊢ (𝑦 ∈ ((𝑅 “ 𝐴) ∩ 𝐵) → 𝑦 ∈ (𝑅 “ (𝐴 ∩ (◡𝑅 “ 𝐵)))) |
25 | 24 | ssriv 3146 |
1
⊢ ((𝑅 “ 𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (◡𝑅 “ 𝐵))) |