ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainss GIF version

Theorem imainss 5019
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
imainss ((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))

Proof of Theorem imainss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . . . . . . . 11 𝑦 ∈ V
2 vex 2729 . . . . . . . . . . 11 𝑥 ∈ V
31, 2brcnv 4787 . . . . . . . . . 10 (𝑦𝑅𝑥𝑥𝑅𝑦)
4 19.8a 1578 . . . . . . . . . 10 ((𝑦𝐵𝑦𝑅𝑥) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
53, 4sylan2br 286 . . . . . . . . 9 ((𝑦𝐵𝑥𝑅𝑦) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
65ancoms 266 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝐵) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
76anim2i 340 . . . . . . 7 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
8 simprl 521 . . . . . . 7 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → 𝑥𝑅𝑦)
97, 8jca 304 . . . . . 6 ((𝑥𝐴 ∧ (𝑥𝑅𝑦𝑦𝐵)) → ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
109anassrs 398 . . . . 5 (((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
11 elin 3305 . . . . . . 7 (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ↔ (𝑥𝐴𝑥 ∈ (𝑅𝐵)))
122elima2 4952 . . . . . . . 8 (𝑥 ∈ (𝑅𝐵) ↔ ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
1312anbi2i 453 . . . . . . 7 ((𝑥𝐴𝑥 ∈ (𝑅𝐵)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
1411, 13bitri 183 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
1514anbi1i 454 . . . . 5 ((𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦) ↔ ((𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦))
1610, 15sylibr 133 . . . 4 (((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
1716eximi 1588 . . 3 (∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) → ∃𝑥(𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
181elima2 4952 . . . . 5 (𝑦 ∈ (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
1918anbi1i 454 . . . 4 ((𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝐵) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
20 elin 3305 . . . 4 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) ↔ (𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝐵))
21 19.41v 1890 . . . 4 (∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
2219, 20, 213bitr4i 211 . . 3 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) ↔ ∃𝑥((𝑥𝐴𝑥𝑅𝑦) ∧ 𝑦𝐵))
231elima2 4952 . . 3 (𝑦 ∈ (𝑅 “ (𝐴 ∩ (𝑅𝐵))) ↔ ∃𝑥(𝑥 ∈ (𝐴 ∩ (𝑅𝐵)) ∧ 𝑥𝑅𝑦))
2417, 22, 233imtr4i 200 . 2 (𝑦 ∈ ((𝑅𝐴) ∩ 𝐵) → 𝑦 ∈ (𝑅 “ (𝐴 ∩ (𝑅𝐵))))
2524ssriv 3146 1 ((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))
Colors of variables: wff set class
Syntax hints:  wa 103  wex 1480  wcel 2136  cin 3115  wss 3116   class class class wbr 3982  ccnv 4603  cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator