Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infregelbex | Unicode version |
Description: Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.) |
Ref | Expression |
---|---|
infregelbex.ex | |
infregelbex.ss | |
infregelbex.b |
Ref | Expression |
---|---|
infregelbex | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infregelbex.b | . . . . . 6 | |
2 | 1 | ad2antrr 480 | . . . . 5 inf |
3 | lttri3 7974 | . . . . . . . 8 | |
4 | 3 | adantl 275 | . . . . . . 7 |
5 | infregelbex.ex | . . . . . . 7 | |
6 | 4, 5 | infclti 6984 | . . . . . 6 inf |
7 | 6 | ad2antrr 480 | . . . . 5 inf inf |
8 | infregelbex.ss | . . . . . . 7 | |
9 | 8 | sselda 3141 | . . . . . 6 |
10 | 9 | adantlr 469 | . . . . 5 inf |
11 | simplr 520 | . . . . 5 inf inf | |
12 | 6 | adantr 274 | . . . . . . 7 inf |
13 | 4, 5 | inflbti 6985 | . . . . . . . 8 inf |
14 | 13 | imp 123 | . . . . . . 7 inf |
15 | 12, 9, 14 | nltled 8015 | . . . . . 6 inf |
16 | 15 | adantlr 469 | . . . . 5 inf inf |
17 | 2, 7, 10, 11, 16 | letrd 8018 | . . . 4 inf |
18 | 17 | ralrimiva 2538 | . . 3 inf |
19 | breq2 3985 | . . . 4 | |
20 | 19 | cbvralv 2691 | . . 3 |
21 | 18, 20 | sylib 121 | . 2 inf |
22 | 1 | adantr 274 | . . 3 |
23 | 6 | adantr 274 | . . 3 inf |
24 | simpl 108 | . . . 4 | |
25 | simpr 109 | . . . . . . . 8 | |
26 | breq2 3985 | . . . . . . . . 9 | |
27 | 26 | cbvralv 2691 | . . . . . . . 8 |
28 | 25, 27 | sylib 121 | . . . . . . 7 |
29 | 1 | ad2antrr 480 | . . . . . . . . 9 |
30 | 8 | ad2antrr 480 | . . . . . . . . . 10 |
31 | simpr 109 | . . . . . . . . . 10 | |
32 | 30, 31 | sseldd 3142 | . . . . . . . . 9 |
33 | 29, 32 | lenltd 8012 | . . . . . . . 8 |
34 | 33 | ralbidva 2461 | . . . . . . 7 |
35 | 28, 34 | mpbid 146 | . . . . . 6 |
36 | breq1 3984 | . . . . . . . 8 | |
37 | 36 | notbid 657 | . . . . . . 7 |
38 | 37 | cbvralv 2691 | . . . . . 6 |
39 | 35, 38 | sylib 121 | . . . . 5 |
40 | 22, 39 | jca 304 | . . . 4 |
41 | 4, 5 | infnlbti 6987 | . . . 4 inf |
42 | 24, 40, 41 | sylc 62 | . . 3 inf |
43 | 22, 23, 42 | nltled 8015 | . 2 inf |
44 | 21, 43 | impbida 586 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 wral 2443 wrex 2444 wss 3115 class class class wbr 3981 infcinf 6944 cr 7748 clt 7929 cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-apti 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-iota 5152 df-riota 5797 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 |
This theorem is referenced by: nninfdclemp1 12379 |
Copyright terms: Public domain | W3C validator |