| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infregelbex | Unicode version | ||
| Description: Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.) |
| Ref | Expression |
|---|---|
| infregelbex.ex |
|
| infregelbex.ss |
|
| infregelbex.b |
|
| Ref | Expression |
|---|---|
| infregelbex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infregelbex.b |
. . . . . 6
| |
| 2 | 1 | ad2antrr 488 |
. . . . 5
|
| 3 | lttri3 8106 |
. . . . . . . 8
| |
| 4 | 3 | adantl 277 |
. . . . . . 7
|
| 5 | infregelbex.ex |
. . . . . . 7
| |
| 6 | 4, 5 | infclti 7089 |
. . . . . 6
|
| 7 | 6 | ad2antrr 488 |
. . . . 5
|
| 8 | infregelbex.ss |
. . . . . . 7
| |
| 9 | 8 | sselda 3183 |
. . . . . 6
|
| 10 | 9 | adantlr 477 |
. . . . 5
|
| 11 | simplr 528 |
. . . . 5
| |
| 12 | 6 | adantr 276 |
. . . . . . 7
|
| 13 | 4, 5 | inflbti 7090 |
. . . . . . . 8
|
| 14 | 13 | imp 124 |
. . . . . . 7
|
| 15 | 12, 9, 14 | nltled 8147 |
. . . . . 6
|
| 16 | 15 | adantlr 477 |
. . . . 5
|
| 17 | 2, 7, 10, 11, 16 | letrd 8150 |
. . . 4
|
| 18 | 17 | ralrimiva 2570 |
. . 3
|
| 19 | breq2 4037 |
. . . 4
| |
| 20 | 19 | cbvralv 2729 |
. . 3
|
| 21 | 18, 20 | sylib 122 |
. 2
|
| 22 | 1 | adantr 276 |
. . 3
|
| 23 | 6 | adantr 276 |
. . 3
|
| 24 | simpl 109 |
. . . 4
| |
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | breq2 4037 |
. . . . . . . . 9
| |
| 27 | 26 | cbvralv 2729 |
. . . . . . . 8
|
| 28 | 25, 27 | sylib 122 |
. . . . . . 7
|
| 29 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 30 | 8 | ad2antrr 488 |
. . . . . . . . . 10
|
| 31 | simpr 110 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | sseldd 3184 |
. . . . . . . . 9
|
| 33 | 29, 32 | lenltd 8144 |
. . . . . . . 8
|
| 34 | 33 | ralbidva 2493 |
. . . . . . 7
|
| 35 | 28, 34 | mpbid 147 |
. . . . . 6
|
| 36 | breq1 4036 |
. . . . . . . 8
| |
| 37 | 36 | notbid 668 |
. . . . . . 7
|
| 38 | 37 | cbvralv 2729 |
. . . . . 6
|
| 39 | 35, 38 | sylib 122 |
. . . . 5
|
| 40 | 22, 39 | jca 306 |
. . . 4
|
| 41 | 4, 5 | infnlbti 7092 |
. . . 4
|
| 42 | 24, 40, 41 | sylc 62 |
. . 3
|
| 43 | 22, 23, 42 | nltled 8147 |
. 2
|
| 44 | 21, 43 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-apti 7994 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-riota 5877 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: nninfdclemp1 12667 |
| Copyright terms: Public domain | W3C validator |