| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infregelbex | Unicode version | ||
| Description: Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.) |
| Ref | Expression |
|---|---|
| infregelbex.ex |
|
| infregelbex.ss |
|
| infregelbex.b |
|
| Ref | Expression |
|---|---|
| infregelbex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infregelbex.b |
. . . . . 6
| |
| 2 | 1 | ad2antrr 488 |
. . . . 5
|
| 3 | lttri3 8214 |
. . . . . . . 8
| |
| 4 | 3 | adantl 277 |
. . . . . . 7
|
| 5 | infregelbex.ex |
. . . . . . 7
| |
| 6 | 4, 5 | infclti 7178 |
. . . . . 6
|
| 7 | 6 | ad2antrr 488 |
. . . . 5
|
| 8 | infregelbex.ss |
. . . . . . 7
| |
| 9 | 8 | sselda 3224 |
. . . . . 6
|
| 10 | 9 | adantlr 477 |
. . . . 5
|
| 11 | simplr 528 |
. . . . 5
| |
| 12 | 6 | adantr 276 |
. . . . . . 7
|
| 13 | 4, 5 | inflbti 7179 |
. . . . . . . 8
|
| 14 | 13 | imp 124 |
. . . . . . 7
|
| 15 | 12, 9, 14 | nltled 8255 |
. . . . . 6
|
| 16 | 15 | adantlr 477 |
. . . . 5
|
| 17 | 2, 7, 10, 11, 16 | letrd 8258 |
. . . 4
|
| 18 | 17 | ralrimiva 2603 |
. . 3
|
| 19 | breq2 4086 |
. . . 4
| |
| 20 | 19 | cbvralv 2765 |
. . 3
|
| 21 | 18, 20 | sylib 122 |
. 2
|
| 22 | 1 | adantr 276 |
. . 3
|
| 23 | 6 | adantr 276 |
. . 3
|
| 24 | simpl 109 |
. . . 4
| |
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | breq2 4086 |
. . . . . . . . 9
| |
| 27 | 26 | cbvralv 2765 |
. . . . . . . 8
|
| 28 | 25, 27 | sylib 122 |
. . . . . . 7
|
| 29 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 30 | 8 | ad2antrr 488 |
. . . . . . . . . 10
|
| 31 | simpr 110 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | sseldd 3225 |
. . . . . . . . 9
|
| 33 | 29, 32 | lenltd 8252 |
. . . . . . . 8
|
| 34 | 33 | ralbidva 2526 |
. . . . . . 7
|
| 35 | 28, 34 | mpbid 147 |
. . . . . 6
|
| 36 | breq1 4085 |
. . . . . . . 8
| |
| 37 | 36 | notbid 671 |
. . . . . . 7
|
| 38 | 37 | cbvralv 2765 |
. . . . . 6
|
| 39 | 35, 38 | sylib 122 |
. . . . 5
|
| 40 | 22, 39 | jca 306 |
. . . 4
|
| 41 | 4, 5 | infnlbti 7181 |
. . . 4
|
| 42 | 24, 40, 41 | sylc 62 |
. . 3
|
| 43 | 22, 23, 42 | nltled 8255 |
. 2
|
| 44 | 21, 43 | impbida 598 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-apti 8102 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-cnv 4724 df-iota 5274 df-riota 5947 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 |
| This theorem is referenced by: nninfdclemp1 13007 |
| Copyright terms: Public domain | W3C validator |